Skip to main content
Log in

The control of grain boundary segregation and segregation-induced brittleness in iron by the application of a magnetic field

  • Grain Boundary and Interface Engineering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recycling of iron and steel becomes an universally important issue from the viewpoint of energy and resource saving. Impurity elements like Sn and Cu tend to accumulate in steels by repeated recycling and remarkably degrade mechanical properties of recycled iron alloys due to segregation-induced intergranular embrittlement. The goal of this work is to study the potential of magnetic annealing for the control of grain boundary segregation and intergranular embrittlement in iron alloy. This paper reports several important findings regarding the effect of magnetic annealing on segregation-induced brittleness in iron-tin alloy. Of particular importance is the observations that the concentration of tin at grain boundaries in iron is decreased by magnetic annealing and fracture toughness of iron-tin alloy is drastically improved to the level as high as pure iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Hondros, Phil. Trans. R. Soc. Lond. A 295 (1980) 9.

    Google Scholar 

  2. W. C. Johnson and J. M.Blakely (eds.) “Interfacial Segregation,” (American Society for Metals, 1979).

  3. R. Wiswanathan, Scripta Metall. 8 (1974) 1225.

    Article  Google Scholar 

  4. C. J. McMahon Jr., Mater. Charact. 26 (1991) 269.

    Article  Google Scholar 

  5. H. R. Tipler and D. McLean, J. Metal Sci. 4 (1970) 103.

    Google Scholar 

  6. A. Kumer and B. L. Eyre, Proc. R. Soc. Lond. A370 (1980) 431.

    Google Scholar 

  7. M. P. Seah and E. D. Hondros, Proc. Roy. Soc. A335 (1973) 191.

    Google Scholar 

  8. K. Noro, M. Takeuchi and Y. Mizukami, ISIJ Intern. 37 (1997) 198.

    Google Scholar 

  9. P. Lejcek and S. Hofmann, Interface Sci. 1 (1993) 161.

    Google Scholar 

  10. T. Watanabe, S. Kitamura and S. Karashima, Acta Metall. 28 (1980) 455.

    Article  Google Scholar 

  11. R. Smoluchowski and R. W. Turner, J. Appl. Phys. 20 (1949) 745.

    Article  Google Scholar 

  12. H. O. Martikainen and V. K. Lindroos, Scandinavian J. Metallurgy 10 (1981) 3.

    Google Scholar 

  13. T. Watanabe, Y. Suzuki, S. Tanii and H. Oikawa, Phi. Mag. Lett. 62 (1990) 9.

    Google Scholar 

  14. N. Masahashi, M. Matsuo and K. Watanabe, J. Mater. Res. 13 (1998) 457.

    Google Scholar 

  15. T. Watanabe, in “Proc The Fourth Intern. Conf. on Recrystallization and Related Phenomena” (The Japan Inst. Metals, 1999) p. 99.

  16. K. Harada, S. Tsurekawa, T. Watanabe and G. Palumbo, Scripta Mater. 49 (2003) 367.

    Article  Google Scholar 

  17. H. Pender and R. L. Jones, Phys. Rev. 1 (1913) 259.

    Article  Google Scholar 

  18. M. Shimotomai and K. Maruta, Phys. Rev. 42 (2000) 499.

    Google Scholar 

  19. J.-K. Choi, H. Ohtsuka, Y. Xu and W.-Y. Choo, Phys. Rev. 43 (2000) 221.

    Google Scholar 

  20. G. Sauthoff and W. Pitsch, Phil. Mag. B 56 (1987) 471.

    Google Scholar 

  21. S. Tsurekawa, K. Kawahara, K. Okamoto, T. Watanabe and R. Faulkner, Mater. Sci. Eng. A 387–389 (2005) 442.

    Google Scholar 

  22. P. Lejcek and S. Hofmann, Crit. Rev. Sol. State Mater. Sci. 20 (1995) 1.

    Google Scholar 

  23. ASTM Standard E-399-81, “Annual Book of ASTM Standard,” Part 10 (1981).

  24. A. Morawiec, J. A. Szpunar and D. C. Hinz, Acta Metall. 41 (1993) 2825.

    Article  Google Scholar 

  25. K. E. Szklarz and M. L. Wayman, Acta Metall. 29, 341

    Article  Google Scholar 

  26. K. Honda, “Magnetic Properties of Matter” (Syokwabo and Company, Tokyo, Japan, 1928) p. 129.

    Google Scholar 

  27. M. P. Seah and C. Lea, Phil. Mag. 31 (1975) 627.

    Google Scholar 

  28. K. Ishida, S. Yokoyama and T. Nishizawa, Acta Metall. 33 (1985) 255.

    Article  Google Scholar 

  29. B. Szpunar, U. Erb, K. T. Aust, G. Palumbo and L. J. Lewis, Mat. Res. Soc. Symp. Proc. 318 (1994) 477.

    Google Scholar 

  30. M. Sob, I.Turek, L.Wang, V.Vitek, in Proc. 10th Intern. Metallurgical and Materials Conference, METAL 2001 (TANGER, Ostraba, 2001) p. 1 (CD-ROM).

  31. M. R. Fitzsimmons, A. R⊘ll, E. Burkel, K. E. Sikafus, M. A. Nastasi, G. S. Smith and R. Pynn, J. Appl. Phys. 76 (1994) 6295.

    Article  Google Scholar 

  32. M. R. Fitzsimmons, A. R⊘ll, E. Burkel, K. E. Sikafus, M. A. Nastasi, G. S. Smith and R. Pynn, NanoStructured Mater. 6 (1995) 539.

    Article  Google Scholar 

  33. M. Sob, Private communication.

  34. L. C. Lim and T. Watanabe, Scripta Metall. 23 (1989) 489.

    Article  Google Scholar 

  35. L. C. Lim and T. Watanabe, Acta Metall. Mater. 38 (1990) 2507.

    Article  Google Scholar 

  36. S. Tsurekawa and T. Watanabe, Mater. Sci. Forum, 426–432 (2003) 3819.

    Google Scholar 

  37. J. W. Mitchell and P. L. Raffo, Can. J. Phys. 45 (1967) 1047.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tsurekawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsurekawa, S., Okamoto, K., Kawahara, K. et al. The control of grain boundary segregation and segregation-induced brittleness in iron by the application of a magnetic field. J Mater Sci 40, 895–901 (2005). https://doi.org/10.1007/s10853-005-6507-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6507-2

Keywords

Navigation