Skip to main content
Log in

Ballistic-performance optimization of a hybrid carbon-nanotube/E-glass reinforced poly-vinyl-ester-epoxy-matrix composite armor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The material model for a multi-walled carbon nanotube (MWCNT) reinforced poly-vinyl-ester-epoxy matrix composite material (carbon nanotube reinforced composite mats, in the following) developed in our recent work (M. Grujicic et al. submitted), has been used in the present work within a transient non-linear dynamics analysis to carry out design optimization of a hybrid polymer-matrix composite armor for the ballistic performance with respect to the impact by a fragment simulating projectile (FSP). The armor is constructed from E-glass continuous-fiber poly-vinyl-ester-epoxy matrix composite laminas interlaced with the carbon nanotube reinforced composite mats. Different designs of the hybrid armor are obtained by varying the location and the thickness of the carbon nanotube reinforced composite mats. The results obtained indicate that at a fixed thickness of the armor, both the position and the thickness of the carbon nanotube reinforced composite mats affect the ballistic performance of the armor. Specifically, it is found that the best performance of the armor is obtained when thicker carbon nanotube reinforced composite mats are placed near the front armor face, the face which is struck by the projectile. The results obtained are rationalized using an analysis of the elastic wave reflection and transmission behavior at the lamina/met and laminate/air interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U.S. Military Department of Defense Specification, MIL-A-12560H95, July (1991)

  2. Williams K, Poon K (2000) A numerical analysis of the effect of surrogate anti-tank mine blasts on the M113. DREV TM-2000-007, DRDC, Valcartier, Quebec, Canada

  3. Grujicic M, Pandurangan B, Koudela KL, Cheeseman BA (2006) A computational analysis of the ballistic performance of light-weight hybrid-composite armor. Appl Surf Sci (accepted for publication)

  4. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Nano Lett 3:1107

    Article  CAS  Google Scholar 

  5. Ashrafi B, Hubert P (2006) Compos Sci Technol 66:387

    Article  CAS  Google Scholar 

  6. Lourie O, Wagner HD (1998) J Mater Res 13:2418

    Article  CAS  Google Scholar 

  7. Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA, Smalley RE (1999) Appl Phys Lett 74:3803

    Article  CAS  Google Scholar 

  8. Andrews R, Jacques D, Rao AM, Rantell T, Derbyshire F, Chen Y, Chen J, Haddon RC (1999) Appl Phys Lett 75:1329

    Article  CAS  Google Scholar 

  9. Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Nat Mater 1:190

    Article  CAS  Google Scholar 

  10. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Phys Rev Lett 82:944

    Article  CAS  Google Scholar 

  11. Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) J Phys Chem B 105:2525

    Article  CAS  Google Scholar 

  12. Frankland SJV, Caglar A, Brenner DW, Griebel M (2002) J Phys Chem B 106:3046

    Article  CAS  Google Scholar 

  13. Watts PCP, Hsu WK, Chen GZ, Fray DJ, Kroto HW, Walton DRM (2001) J Mater Chem 11:2482

    Article  CAS  Google Scholar 

  14. Thess A (1996) Science 273:483

    Article  CAS  Google Scholar 

  15. Kis A, Csanyi G, Salvetat J-P, Lee T-N, Couteau E, Kulik AJ, Benoit W, Brugger J, Forro L (2004) Nat Mater 3:153

    Article  CAS  Google Scholar 

  16. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Nature 423:703

    Article  CAS  Google Scholar 

  17. Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai RR, Ajayan PM (2002) Science 296:884

    Article  CAS  Google Scholar 

  18. Grujicic M, Cao G, Roy WN (2004) Appl Surf Sci 227:349

    Article  CAS  Google Scholar 

  19. Grujicic M, Cao G, Roy WN (2004) J Mater Sci 39:2315

    Article  CAS  Google Scholar 

  20. AUTODYN-2D and 3D, Version 6.1 (2006) User Documentation, Century Dynamics Inc

  21. Grujicic M, Pandurangan B, Cheeseman BA (2006) Shock Vib 13:41

    Article  Google Scholar 

  22. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th international symposium on ballistics

  23. Clegg RA, Hayhurst CJ, Leahy JG, Deutekon M (1999) Application of a coupled anisotropic material model to high velocity impact response of composite textile armor. 18th International symposium on ballistics, San Antonio, Texas, 15–19 November, 1999, pp 791–798

  24. Anderson CE, Cox PA, Johnson GR, Maudlin PJ (1994) Comput Mech 15:201

    Article  Google Scholar 

  25. Gruneisen (1926) Handbuch der Physik. Springer-Verlag, Berlin, p 10

    Google Scholar 

  26. Riedel W, White DM, Clegg RA and Harwick W (2003) Advanced material damage models for numerical simulation codes, EMI-Report No. I 75/03, ESA CR (P) 4379

  27. Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  28. Montgomery DC (2002) Design and analysis of experiments. Wiley Publishers

  29. Ross PJ (1996) Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  30. Kardos JL (1985) Pure Appl Chem 57:1651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The material presented in this paper is based on work supported by the Naval Research Office ender the Grant Number N00014-05-1-0844, by the U.S. Army/Clemson University Cooperative Agreement Number W911NF-04-2-0024 and by the U.S. Army Grant Number DAAD19-01-1-0661. The authors are indebted to Dr. Tom Juska of the Naval Research Laboratory and to Drs. Walter Roy, Bryan Cheeseman and Fred Stanton from the Army Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mica Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Pandurangan, B., Angstadt, D.C. et al. Ballistic-performance optimization of a hybrid carbon-nanotube/E-glass reinforced poly-vinyl-ester-epoxy-matrix composite armor. J Mater Sci 42, 5347–5359 (2007). https://doi.org/10.1007/s10853-006-0959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0959-x

Keywords

Navigation