Skip to main content
Log in

Statistical model for characterizing random microstructure of inclusion–matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The variation of arrangement of micro-structural entities (i.e. inclusions) influences local properties of composites. Thus, there is a need to classify and quantify different micro-structural arrangements. In other words, it is necessary to identify descriptors that characterize the spatial dispersion of inclusions in random composites. On the other hand, Delaunay triangulation associated with an arbitrary set of points in a plane is unique which makes it a good candidate for generating such descriptors. This paper presents a framework for establishing a methodology for characterizing microstructure morphology in random composites and correlating that to local stress field. More specifically, in this paper we address three main issues: correlating microstructure morphology to local stress fields, effect of clustering of inclusions on statistical descriptors identified in the paper, and effect of number of realizations of statistical volume elements (SVEs) on statistical descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Eshelby JD (1957) Proc Roy Soc A241:376

    Google Scholar 

  2. Mori T, Wakashima K (1990) In: Weng GJ, Taya M, Abe H (eds) Micromechanics and inhomogeneity, the Mura Anniversary volume. Springer, New York, 269 pp

  3. Benveniste G, Dvorak G, Chen T (1989) Mech Mater 7:305

    Article  Google Scholar 

  4. Tong Y, Jasiuk I (1990) In: Proc. American Society for composites. 5th technical conference, Technomic, Lancaster, PA, p 117

  5. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials, 2nd edn. Amsterdam, North-Holland

    Google Scholar 

  6. Chen J, Thorpe M, Davis L (1995) J Appl Phys 77:4349

    Article  CAS  Google Scholar 

  7. Takao Y, Taya M, Chou T (1982) J Appl Mech 49:536

    Article  CAS  Google Scholar 

  8. AL-Ostaz A, Jasiuk I (1997) Acta Mater 45(10):4131

    Article  CAS  Google Scholar 

  9. Becker R, Smelser REJ (1994) J Mech Phys Solids 42:773

    Article  Google Scholar 

  10. Brockenbrough JR, Suresh S, Wienecke HA (1991) Acta Metal Mater 39:735

    Article  CAS  Google Scholar 

  11. Alzebdeh K, Al-Ostaz A, Jasiuk I, Ostoja-Starzewski M (1998) Int J Solids Struct 35:2537

    Article  Google Scholar 

  12. Chiaia B, Vervuurt A, Van Mier JGM (1997) Eng Fract Mech 57:301

    Article  Google Scholar 

  13. Ostoja-Starzewski M (1998) Int J Solids Struct 35:2429

    Article  Google Scholar 

  14. Ostoja-Starzewski M, Jasiuk I, Alzebdeh K, Al-Ostaz A (1996) In: Symposium on scaling laws for mechanics of fracture, 19th intl. congress of theoretical and applied mechanics, Kyoto, Japan

  15. Ostoja-Starzewski M, Al-Ostaz A, Jasiuk I, Alzebdeh K (1996) In: Frangopol DM, Mircea D (eds) Probabilistic mechanics & structural reliability, Proceedings of the seventh specialty conference of ASCE, Grigoriu, p 362

  16. Pyrz R (1994) Mater Sci Eng A177:253

    Article  Google Scholar 

  17. Day A, Snyder K, Garboczi E, Thorpe M (1992) J Mech Phys Solids 40:1031

    Article  Google Scholar 

  18. Ghosh S, Mukhopadhyay S (1993) Comput Methods Appl Mech Eng 104:211

    Article  Google Scholar 

  19. Ghosh S, Lee K, Moorthy S (1996) Comput Methods Appl Mech Eng 132(1-2):63

    Article  Google Scholar 

  20. Ghosh S, Lee KH, Moorthy S (1995) Int J Solids Struct 32 (1):27

    Article  Google Scholar 

  21. Ghosh S, Mallett RL (1994) Comput Struct 50(1):33

    Article  Google Scholar 

  22. Ghosh S, Mukhopadhyay SN (1991) Comput Struct 41(2):245

    Article  Google Scholar 

  23. Ghosh S, Nowak Z, Lee K (1997) Compos Sci Technol 57:1187

    Article  Google Scholar 

  24. Ghosh S, Nowak Z, Lee K (1997) Acta Mater 45(6):2215

    Article  CAS  Google Scholar 

  25. Ghosh M, Moran B, Achenbach J (1994) Int J Damage Mech 3:357

    Article  Google Scholar 

  26. Zhang J, Katsube N (1995) Finite Elements Anal Design 19:45

    Article  Google Scholar 

  27. Gong SX, Meguid SA (1993) Acta Mech 99:49

    Article  Google Scholar 

  28. Daniel IM, Durelli J (1962) Exp Mech 2:240

    Article  Google Scholar 

  29. Marloff R, Denial I (1969) Exp Mech 9:156

  30. Pijaudier-Cabot G, Bazant ZP (1992) J Eng Mech ASCE 11310):1512

    Article  Google Scholar 

  31. Kachanov M (1987) Int J Fract 28:11

    Google Scholar 

  32. Alzebdeh KI (1994) PhD dissertation, Michigan State University

  33. Pyrz R (1994) Comp Sci Tech 50:197

    Article  Google Scholar 

  34. Pyrz R, Bochenek B (1994) Sci Eng Compos Mater 3(9):5

    Google Scholar 

  35. Pyrz R, Bochenek B (1995) IUTAM symposium on microstructure-property interactions in composite materials, p 313

    Chapter  Google Scholar 

  36. Pyrz R, Bochenek B (1998) Int J Solids Struct 35:2413

    Article  Google Scholar 

  37. Axelsen MS, Pyrz R (1997) IUTAM symposium on microstructure-property interactions in composite materials, p 15

    Chapter  Google Scholar 

  38. https://doi.org/www.aub.auc.dk/phd/department15/text/axelsen.pdf

  39. Green PJ, Sibson R (1977) The Comput J 21(2):168

    Article  Google Scholar 

  40. Gilbert EN (1962) Ann Math Statist 33:958

    Article  Google Scholar 

  41. Anipindi D (2004) Master Thesis, University of Mississippi

  42. Benjamin JR, Cornell CA (1989) Probability, statistics and decision for civil engineers. McGraw-Hill Publishing Company

  43. James EG (1998) Random number generation and Monte Carlo Methods. Springer Publishers

  44. O’Rourke J (1998) Computational geometry in C, 2nd edn. Cambridge University Press

  45. Heath MT (2002) Scientific computing, an introductory survey, 2nd edn. McGraw-Hill Publishing Company, New York

  46. Stauffer D, Aharany A (1992) Introduction to percolation theory, 2nd edn. Taylor and Francis Ltd, London

  47. Takahashi J, Suito H (2001) Acta Mater 49(4):711

    Article  CAS  Google Scholar 

  48. Pfeiffer PE (1995) Basic probability topics using Matlab. PWS Publishing Company

  49. https://doi.org/www.mathworld.wolfram.com/topics/StatisticalDistributions.html

  50. https://doi.org/www.ocw.mit.edu/NR/rdonlyres/Materials-Science-and-Engineering/3-11Mechanics-of-MaterialsFall1999/5991E176-AC60-4399-87F0-86AE35963750/0/composites.pdf

  51. https://doi.org/www.cse.uiuc.edu/heath/scicomp/notes/chap13.pdf

  52. Shan Z, Gokhale AM (2004) Comput Mater Sci 24:361

    Article  Google Scholar 

  53. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Int J Solids Struct 40:3647

    Article  Google Scholar 

  54. Stroeven M, Askes H, Sluys LJ (2004) Comput Methods Appl Mech Eng 193:3221

    Article  Google Scholar 

  55. Swaminathan S, Ghosh S, Pagano NJ (2006) J Compos Mater 40:583

    Article  CAS  Google Scholar 

  56. Swaminathan S Ghosh S, Pagano NJ (2006) J Compos Mater 40:605

    Article  CAS  Google Scholar 

  57. Ostoja-Starzewski M (2006) Probabilist Eng Mech 21:112

    Article  Google Scholar 

  58. ANSYS 7.0 User Manual. Swanson Analysis Systems, Inc., Houston (2002)

  59. Hashin Z (1983) J Appl Mech 50:481

    Article  Google Scholar 

  60. Hashin Z (1962) J Appl Mech 29:143

    Article  CAS  Google Scholar 

  61. Mura T (1998) Micromechanics of defects in solids. Kluwer Academic Publishers, Dordrecht

  62. Sulivian BJ, Hashin Z (1990) Controlled interfaces in composite materials. Elselvier, New York, p 521

    Book  Google Scholar 

  63. Christensen RM (1991) Mechanics of composite materials. Krieger Publishing Company, Malabar Florida

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the partial support for this research from U.S. Air Force Grant # F08637-03-C-6006 with a subcontract # S-29000.23 from Applied Research Associates Inc. Also, the authors would like to acknowledge the collaboration and help they received from Prof. Martin Ostoja-Starzewski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Al-Ostaz.

Appendices

Appendix 1

Table 4 Mean and standard deviation of probability distributions

Appendix 2

Table 5 Probability distribution library

Appendix 3: Self Consistent method [62]

Consider a system of aligned fibers along the x 1 direction. Media of this type have symmetry properties in the plane normal to the fiber direction (x 2 x 3 directions). Such media are characterized as transversely isotropic materials. Such media have five independent constants (i.e. (i.e. \({E_{11}, \nu_{12}, K_{23},\mu_{12}, \mu_{23}}\)). Where E, K and μ are the Young’s, bulk and shear modulii respectively and v is the Poisson’s ratio.

$$ E_{11}=(1-f)E_{m}+fE_{f}+\frac{4f(1-f)(\nu_f -\nu_m)^2 \mu_m} {\left[(1-f)\mu_m/(K_f+\mu_f/3)\right]+\left[f\mu_m/(K_m+\mu_m/3)\right]+1} $$
(A1)
$$ \mu_{12}=(1-f)\nu_{m}+f\nu_{f}+\frac{f(1-f)(\nu_f -\nu_m)\left[\mu_m/ (K_m+\mu_m/3)-\mu_m/(K_f+\mu_f/3)\right]}{\left[(1-f)\mu_m/(K_f+\mu_f/3\right] +\left[f\mu_m/(K_m+\mu_m/3)\right]+1} $$
(A2)
$$ K_{23} =K_m+\frac{\mu_m}{3}+\frac{f} {1/\left[K_f-K_m+\frac{1}{3}(\mu_f-\mu_m)\right]+(1-f)/\left[K_m+\frac{4 \mu_m}{3}\right]} $$
(A3)
$$\frac{\mu_{12}}{\mu_{m}}=\frac{\mu_f(1+f)+\mu_m(1-f)} {\mu_f(1-f)+\mu_m(1+f)} $$
(A4)
$$A\left(\frac{\mu_{23}}{\mu_m}\right)^2+2B\left(\frac{\mu 23}{\mu_m}\right) +C=0 $$
(A5)

where

$$ \begin{array}{ll} &A=3f(1-f)^2\left(\frac{\mu_f}{\mu_m}-1\right) \left(\frac{\mu_f}{\mu_m} =\eta_f\right)+\left[\frac{\mu_f}{\mu_m}\eta_m+\eta_f\eta_m=\left( \frac{\mu_f}{\mu_m}-\eta_f\right)f^3\right]\\ &*\left[f\eta_m\left(\frac{\mu_f}{\mu_m}-1\right)-\left(\frac{\mu_f}{\mu_m} \eta_m+1\right)\right]\\ &B=3f(1-f)^2\left(\frac{\mu_f}{\mu_m}-1\right) \left(\frac{\mu_f}{\mu_m} =\eta_f\right)+\frac{1}{2}\left[\frac{\mu_f}{\mu_m}\eta_m+ \left( \frac{\mu_f}{\mu_m}-1\right)f+1\right]\\ &*\left[(\eta_m-1)\left( \frac{\mu_f}{\mu_m}\eta_m+\eta_f\right)-2 \left(\frac{\mu_f}{\mu_m} \eta_m-\eta_f\right)f^3\right]\\ &+\frac{f}{2}(\eta_m+1)\left( \frac{\mu_f}{\mu_m}-1\right) \left[\left( \frac{\mu_f}{\mu_m}\eta_m+\eta_f\right)+ \left(\frac{\mu_f}{\mu_m} \eta_m-\eta_f\right)f^3\right]\\ &C=3f(1-f)^2\left(\frac{\mu_f}{\mu_m}-1\right) \left(\frac{\mu_f}{\mu_m} +\eta_f\right)+\left[\frac{\mu_f}{\mu_m}\eta_m+\left( \frac{\mu_f}{\mu_m}-1\right)f+1\right]\\ &*\left[\frac{\mu_f}{\mu_m}\eta_m+\left(\frac{\mu_f}{\mu_m} \eta_m-\eta_f\right)f^3\right]\\ \end{array} $$
(A6)

where f = Volume fraction η = 3–4ν.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Ostaz, A., Diwakar, A. & Alzebdeh, K.I. Statistical model for characterizing random microstructure of inclusion–matrix composites. J Mater Sci 42, 7016–7030 (2007). https://doi.org/10.1007/s10853-006-1117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1117-1

Keywords

Navigation