Skip to main content
Log in

Measurement of interfiber friction force for pulp fibers by atomic force microscopy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interfiber friction in paper exists in fiber suspensions, fiber flocs, and fiber networks. The interfiber friction force is, therefore, important both in papermaking and in the use of paper. The objective of this research is to develop a methodology using atomic force microscopy (AFM) for the direct measurement of the friction force between pulp fibers. Different factors such as AFM scanning velocity, contact area, and fiber surface roughness were investigated. The results show that AFM is an effective tool for measuring micro-scale interfiber friction forces. Both AFM scanning velocity and fiber surface roughness affect the measured results. The coefficient of friction increases, but the initial adhesion force decreases, with increasing fiber surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Back E (1991) Paper-to-paper and paper-to-metal friction. In: TAPPI international paper physics conference, Kona, Hawaii, pp 49–65

  2. Mogahzy EYE, Gupta BS (1993) Textile Res J 63(4):219

    Article  Google Scholar 

  3. Jong DHG (1993) Textile Res J 63(1):14

    Article  Google Scholar 

  4. Andersson SR, Rasmuson A (1997) J Pulp Paper Sci 23(1):J5

    CAS  Google Scholar 

  5. Postle LJ, Ingham J (1952) J Text Inst Trans 43:T77

    Article  Google Scholar 

  6. Cox DR (1952) J Text Inst 43:T87

    Google Scholar 

  7. Lord E (1955) J Text Inst 46:P41

    Article  Google Scholar 

  8. Howell HG (1954) J Text Inst 45:T575

    Article  Google Scholar 

  9. Mizuno H, Kjellin M, Nordgren N, Petterson T, Wallqvist V, Fielden M, Rutland MW (2006) Aust J Chem 59:390

    Article  CAS  Google Scholar 

  10. Linderberg J, Gralén N (1948) Textile Res J 18(5):287

    Article  Google Scholar 

  11. Srivastava A, Astrom KJ, Turner KL (2007) Tribol Lett 27:315

    Article  Google Scholar 

  12. Perry SS, Somorjai GA, Mate MC, White RL (1995) Tribol Lett 1:233

    CAS  Google Scholar 

  13. Heim LO, Blum J, Preuss M, Butt HJ (1999) Phys Rev Lett 83(16):3328

    Article  CAS  Google Scholar 

  14. Bhushan B (1998) Proc Inst Mech Eng Part J 212:1

    Article  Google Scholar 

  15. Zauscher S, Klingenberg DJ (2001) Colloids Surf A: Physicochem Eng Aspects 178:213

    Article  CAS  Google Scholar 

  16. Nigmatullin R, Lovitt R, Wright C, Linder M, Nakari-Setälä T, Gama M (2004) Colloids Surf B: Biointerfaces 35:125

    Article  CAS  Google Scholar 

  17. Kontturi E, Tammelin T, Österberg M (2006) Chem Soc Rev 35:1287

    Article  CAS  Google Scholar 

  18. Stiernstedt J, Nordgren N, Wågberg L, Brumer H, Gray DG, Rutland MW (2006) J Colloid Interface Sci 303:117

    Article  CAS  Google Scholar 

  19. Stiernstedt J, Brumer H, Zhou Q, Teeri TT, Rutland MW (2006) Biomacromolecules 7(7):2147

    Article  CAS  Google Scholar 

  20. Carambassis A, Rutland MW (1999) Langmuir 15(17):5584

    Article  CAS  Google Scholar 

  21. Fält S, Vesterlind EL, Larsson PT (2004) Cellulose 11:151

    Article  Google Scholar 

  22. Bowen WR, Stoton JAG, Doneva TA (2002) Surf Interface Anal 33:7

    Article  CAS  Google Scholar 

  23. Feiler A, Larson I, Jenkins P, Attard P (2000) Langmuir 16(26):10269

    Article  CAS  Google Scholar 

  24. Howell HG, Mieszkis KW, Tabor D (1959) Friction in textile. Butterworth Scientific Publications, London

    Google Scholar 

  25. Rabinowicz E (1995) Friction and wear of materials. John Wiley, New York

    Google Scholar 

  26. Carpick RW, Agraït N, Ogletree DF, Salmeron M (1996) J Vac Sci Technol B 14(2):1289

    Article  CAS  Google Scholar 

  27. He JH, Batchelor WJ, Johnston RE (2007) J Mater Sci 42(2):522. doi:https://doi.org/10.1007/s10853-006-1146-9

    Article  CAS  Google Scholar 

  28. Bhushan B (1999) Principles and applications of tribology. Wiley-Interscience, New York

    Google Scholar 

  29. Homola AM, Israelachvili JN, Gee ML, McGuiggan PM (1989) J Tribol 111(4):675

    Article  CAS  Google Scholar 

  30. Labardi M, Allegrini M, Ascoli C, Ferdiani C, Salerno M (1995) In: Guntherodt HJ, Anselmetti D, Meyer E (eds) Forces in scanning probe methods. Academic Publishers, Dordrecht, p 319

  31. Sundararajan S, Bhushan B (2000) J Appl Sci 88(8):4825

    CAS  Google Scholar 

  32. Batchelor WJ, He J, Sampson WW (2006) J Mater Sci 41(24):8377. doi:https://doi.org/10.1007/s10853-006-0889-7

    Article  CAS  Google Scholar 

  33. Entwistle KM, Kong K, MacDonald MA (2007) J Mater Sci 42(17):7263. doi:https://doi.org/10.1007/s10853-006-1460-2

    Article  CAS  Google Scholar 

  34. Hutter JL, Bechhoefer J (1993) Rev Sci Instrum 64:1868

    Article  CAS  Google Scholar 

  35. Feiler A, Attard P, Larson I (2000) Rev Sci Instrum 71(7):2746

    Article  CAS  Google Scholar 

  36. Ogletree DF, Carpick RW, Salmeron M (1996) Rev Sci Instrum 67(9):3298

    Article  CAS  Google Scholar 

  37. Tocha E, Schonherr H, Vancso GJ (2006) Langmuir 22(5):2340

    Article  CAS  Google Scholar 

  38. Varenberg M, Etsion I, Halperin G (2003) Rev Sci Instrum 74:3362

    Article  CAS  Google Scholar 

  39. Bhushan B, Kulkarni AV (1996) Thin Solid Films 278:49

    Article  CAS  Google Scholar 

  40. Yoshizawa H, Chen Y-L, Israelachvili J (1993) J Phys Chem 97:4128

    Article  CAS  Google Scholar 

  41. Maboudian R, Howe RT (1997) J Vac Sci Technol B 15(1):1

    Article  CAS  Google Scholar 

  42. Bhushan B, Sundararajan S (1998) Acta Mater 46(11):3793

    Article  CAS  Google Scholar 

  43. Liu HS, Ahmed I-U, Scherge M (2001) Thin Solid Films 381:135

    Article  CAS  Google Scholar 

  44. Koinkar VN, Bhushan B (1996) J Vac Sci Technol A 14(4):2378

    Article  CAS  Google Scholar 

  45. Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc Lond A 324:301

    Article  CAS  Google Scholar 

  46. Yoon E-S, Singh RA, Oh H-J, Kong H (2005) Wear 259:1424

    Article  CAS  Google Scholar 

  47. Carpick RW, Ogletree DF, Salmeron M (1999) J Colloid Interface Sci 211:395

    Article  CAS  Google Scholar 

  48. Gellerstedt F, Gatenholm P (1999) Cellulose 6:103

    Article  CAS  Google Scholar 

  49. Kazayawoko M, Balatinecz JJ, Matuana LM (1999) J Mater Sci 34:6189. doi:https://doi.org/10.1023/A:1004790409158

    Article  CAS  Google Scholar 

  50. Yan D, Li K (2008) J Mater Sci 43:2869. doi:https://doi.org/10.1007/s10853-007-2085-9

    Article  CAS  Google Scholar 

  51. Neagu RC, Gamstedt EK (2007) J Mater Sci 42(24):10254. doi:https://doi.org/10.1007/s10853-006-1199-9

    Article  CAS  Google Scholar 

  52. Ntenga R, Beakou A, Ateba JA (2008) J Mater Sci 43(18):6206. doi:https://doi.org/10.1007/s10853-008-2925-2

    Article  CAS  Google Scholar 

  53. Orso S, Wegst UGK, Arzt E (2006) J Mater Sci 41(16):5122. doi:https://doi.org/10.1007/s10853-006-0072-1

    Article  CAS  Google Scholar 

  54. Davies P, Morvan C, Sire O (2007) J Mater Sci 42(13):4850. doi:https://doi.org/10.1007/s10853-006-0546-1

    Article  CAS  Google Scholar 

  55. Bhushan B, Dandavate C (2000) J Appl Phys 87(3):1201

    Article  CAS  Google Scholar 

  56. Page DH, Baker CF, Punton VW (eds) (1989) Fundamentals of papermaking. Mechanical Engineering Publications Ltd, London

    Google Scholar 

  57. Mohlin UB, Miller J (1995) Industrial refining effects of refining conditions on fibre properties. In: Proc. 3rd international refining conference, vol 4. Atlanta, March 19–22, p 1

  58. Koinkar VN, Bhushan B (1997) J Appl Phys 81(6):2472

    Article  CAS  Google Scholar 

  59. Mahlberg R, Niemi HE-M, Denes FS, Rowell RM (1999) Langmuir 15:2985

    Article  CAS  Google Scholar 

  60. Bhushan B (1995) Handbook of micro/nanotribology. Chemical Rubber, Boca Raton, FL

    Google Scholar 

  61. Schmid CF, Klingenberg DJ (2000) J Colloid Interface Sci 226:136

    Article  CAS  Google Scholar 

  62. Switzer LH, Klingenberg DJ (2004) Int J Multiphase Flow 30:67

    Article  CAS  Google Scholar 

  63. Amelina EA, Shchukin ED, Parfenova AM, Bessonov AI, Videnskii IV (1998) Colloid J 60(5):537

    CAS  Google Scholar 

  64. Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) J Colloid Interface Sci 232:10

    Article  CAS  Google Scholar 

  65. Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) J Colloid Interface Sci 232:17

    Article  CAS  Google Scholar 

  66. Mate CM (1993) Wear 168:17

    Article  CAS  Google Scholar 

  67. Fuller KNG, Tabor D (1975) Proc R Soc Lond A 345:327

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Atlantic Innovation Fund (AIF), Canadian Foundation for Innovation (CFI), and KCL (Finland) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F., Li, K. & Kulachenko, A. Measurement of interfiber friction force for pulp fibers by atomic force microscopy. J Mater Sci 44, 3770–3776 (2009). https://doi.org/10.1007/s10853-009-3506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3506-8

Keywords

Navigation