Skip to main content
Log in

Fabrication and oxidation resistance of nanocrystalline Fe10Cr alloy

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocrystalline (nc) and microcrystalline (mc) Fe10Cr alloys were prepared by high energy ball-milling followed by compaction and sintering, and then oxidized in air for 52 h at 400 °C. The oxidation resistance of nc Fe10Cr alloy as determined by measuring the weight gain after regular time intervals was compared with that of the mc alloy of same chemical composition (also prepared by the same fabrication route and oxidized under identical conditions). Oxidation resistance of nc Fe10Cr alloy was found to be in excess of an order of magnitude superior than that of mc Fe10Cr alloy. This article also presents results of secondary ion mass spectrometry (SIMS) of oxidized samples of nc and mc Fe–Cr alloys, evidencing the formation of a more protective oxide scale in the nc alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Koch CC, Youssef KM, Scattergood RO, Murty KL (2005) Adv Eng Mater 7:787

    Article  CAS  Google Scholar 

  2. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  3. Trapp S, Limbach CT, Gonser U, Campbell SJ, Gleiter H (1995) Phys Rev Lett 75:3760

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Roy RA, Roy R (1984) Mater Res Bull 19:169

    Article  CAS  Google Scholar 

  5. Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521

    Article  CAS  Google Scholar 

  6. Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87:1

    Article  Google Scholar 

  7. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Scripta Mater 54:251

    Article  CAS  Google Scholar 

  8. Groza JR (2007) In: Koch CC (ed) Nanostrucutued materials: processing, properties and applications. William Andrew Pub, Norwich, NY

    Google Scholar 

  9. Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929

    Article  CAS  ADS  Google Scholar 

  10. Kedim OE, Cao HS, Guay D (2002) J Mater Process Technol 121:383

    Article  Google Scholar 

  11. Rawers J, Biancaniello F, Jiggetts R, Fields R, Williams M (1999) Scripta Mater 40:277

    Article  CAS  Google Scholar 

  12. Guruswamy S, RL M, Srisukhumbowornchai N, Michael KM, Joseph P (2000) IEEE Trans 36:3219

    CAS  ADS  Google Scholar 

  13. Siegel RW (1997) Mater Sci Forum 235–238:851

    Article  Google Scholar 

  14. Palumbo G, Thorpe SJ, Aust KT (1990) Scripta Metall Mater 24:2347

    Article  CAS  Google Scholar 

  15. Zhao YH, Sheng HW, Lu K (2001) Acta Mater 49:265

    Article  Google Scholar 

  16. Chen D (1995) Mater Sci Eng A 190:193

    Article  Google Scholar 

  17. Wang ZB, Tao NR, Tong WP, Lu J, Lu K (2003) Acta Mater 51:4319

    Article  CAS  Google Scholar 

  18. Wang ZB, Tao NR, Tong WP, Lu J, Lu K (1996) Defect Diffus Forum 249:147

    Article  Google Scholar 

  19. Tong HY, Shi FG, Lavernia EJ (1995) Scripta Metall Mater 32:511

    Article  CAS  Google Scholar 

  20. Liu L, Li Y, Wang F (2008) Mater Lett 62:4081

    Article  CAS  Google Scholar 

  21. Zhang XY, Shi MH, Li C, Liu NF, Wei YM (2007) Mater Sci Eng A 448:259

    Article  Google Scholar 

  22. Zheng HZ, Lu SQ, Dong XJ, Ouyang DL (2008) Mater Sci Eng A 496:524

    Article  Google Scholar 

  23. Niu Y, Cao ZQ, Gesmundo F, Farne G, Randi G, Wang CL (2003) Corros Sci 45:1125

    Article  CAS  Google Scholar 

  24. Hossain MK (1979) Corros Sci 19:1031

    CAS  Google Scholar 

  25. Singh Raman RK (1998) Metall Mater Trans A 28A:577

    Article  Google Scholar 

  26. Singh Raman RK (1995) Metall Mater Trans A 26A:1847

    Article  CAS  ADS  Google Scholar 

  27. Wood GC (1961) Corros Sci 2:173

    Article  Google Scholar 

  28. Giggins CS, Pettit FS (1969) Trans TMS-AIME 245:2509

    CAS  Google Scholar 

  29. Kofstad P (1988) High temperature corrosion. Elsevier Applied Science & Publishers Ltd., New York

    Google Scholar 

  30. Baer RD, Merz MD (1980) Metall Trans 11A:1973

    CAS  Google Scholar 

  31. Trindade VB, Krupp U, Hanjari BZ, Yang S, Christ H (2005) Mater Res 8:371

    CAS  Google Scholar 

  32. Keijser THd, Langford JI, Mittemeijer EJ, Vogels ABP (1982) J Appl Crystallogr 15:308

    Article  Google Scholar 

  33. Singh Raman RK, Tyagi AK (1994) Mater Sci Eng A 185:97

    Article  Google Scholar 

  34. Rees EE, McPhail DS, Ryan MP, Kelly J, Dowsett MG (2003) Appl Surf Sci 203–204:660

    Article  Google Scholar 

  35. Ehlers J, Young DJ, Smaardijik EJ, Tyagi AK, Penkalla HJ, Singheiser L, Quadakkers WJ (2006) Corros Sci 48:3428

    Article  CAS  Google Scholar 

  36. Wagner CJ (1952) Electrochem Soc 99:369; 103:571 (1956)

  37. Wagner C (1965) Corros Sci 5:751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of Australian Research Council (ARC) with a grant (DP0665112) to carry out this study, under their Discovery grant scheme. The authors are also thankful to the support of Australian Institute of Nuclear Science and Engineering (AINSE) for carrying out the SIMS work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.K., Singh Raman, R.K. & Koch, C.C. Fabrication and oxidation resistance of nanocrystalline Fe10Cr alloy. J Mater Sci 45, 4884–4888 (2010). https://doi.org/10.1007/s10853-010-4665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4665-3

Keywords

Navigation