Skip to main content
Log in

Hot working of Ti-17 titanium alloy with lamellar starting structure using 3-D processing maps

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Isothermal compression of Ti-17 titanium alloy with lamellar starting structure at the deformation temperatures ranging from 780 °C to 860 °C, the strain rates ranging from 0.001 to 10 s−1, and the height reductions ranging from 15% to 75% with an interval 15% were carried out. Based on experimental results, 3-D processing maps including strain were developed and used to identify various microstructural mechanisms and distinguish the safe and unsafe domains. The processing maps exhibit two maximum power dissipation efficiency domains and dynamic globularization takes place in this two domains. The first domain occurs at 800–860 °C and at strain rates lower than 0.01 s−1, and the second occurs at 780–800 °C and at strain rates lower than 0.01 s−1. With the increasing of the strains, the values of maximum power dissipation efficiency in this two domains increase. One flow instability domain due to adiabatic shear bands and lamellar kinking occurs at strain rates higher than 0.487 s−1, lower temperature, and higher strain above 0.2. The instability deformation region increases with increasing strain, strain rate, and decreasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Boyer R, Welsch G, Collings EW (eds) (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park, OH, p 453

    Google Scholar 

  2. Tamirisakandala S, Vedam BV, Bhat RB (2003) J Mater Eng Perform 12:666

    Article  Google Scholar 

  3. Seshacharyulu T, Medeiros SC, Frazier WG, Prasad YVRK (2002) Mater Sci Eng A 325:112

    Article  Google Scholar 

  4. Prasad YVRK, Seshacharyulu T, Medeiros SC, Frazier WG (2001) J Mater Process Technol 108:320

    Article  CAS  Google Scholar 

  5. Prasad YVRK, Seshacharyulu T (1998) Mater Sci Eng A 243:82

    Article  Google Scholar 

  6. Seshacharyulu T, Medeiros SC, Morgan JT, Malas JC, Frazier WG, Prasad YVRK (2000) Mater Sci Eng A 279:289

    Article  Google Scholar 

  7. Li AB, Huang LJ, Meng QY, Geng L, Cu XP (2009) Mater Des 30:1625

    CAS  Google Scholar 

  8. Niu Y, Hou H, Li M, Li Z (2008) Mater Sci Eng A 492:24

    Article  Google Scholar 

  9. Jun Z, Weidong Z, Ying S, Yigang Z (2006) Rare Metal Mater Eng 35:265

    Article  Google Scholar 

  10. Poletti C, Degischer HP, Kremmer S, Marketz W (1998) Mater Sci Eng A 486:127

    Google Scholar 

  11. Li X, Lu SQ, Fu MW, Wang KL, Dong XJ (2010) J Mater Process Technol 210:370

    Article  CAS  Google Scholar 

  12. Liu J, Cui Z, Congxin L (2008) J Mater Process Technol 205:497

    Article  CAS  Google Scholar 

  13. Prasad YVRK, Seshacharyulu T (1998) Int Mater Rev 43:243

    CAS  Google Scholar 

  14. Prasad YVRK (2003) J Mater Eng Perform 12:638

    Article  CAS  Google Scholar 

  15. Prasad YVRK, Sasidhara S (1997) Hot working guide: a compendium of processing maps. ASM International, Materials Park, OH

    Google Scholar 

  16. Kalyan Kumar AKS (1987) MS Thesis, Indian Institute of Science, Bangalore, India, p 91

  17. Zong YY, Shan DB, Lu Y (2006) J Mater Sci 41:3753. doi:10.1007/s10853-006-2658-z

    Article  CAS  ADS  Google Scholar 

  18. Semenova IP, Valiev RZ, Yakushina EB, Salimgareeva GH, Lowe TC (2008) J Mater Sci 43:7354. doi:10.1007/s10853-008-2984-4

    Article  CAS  ADS  Google Scholar 

  19. Chauhan VS, Misra A (2008) J Mater Sci 43:5634. doi:10.1007/s10853-008-2590-5

    Article  CAS  ADS  Google Scholar 

  20. Wang KX, Zeng WD, Zhao YQ, Lai YJ, Zhang XM, Zhou YG (online press) Mater Sci Technol. doi:10.1179/174328409X463252

  21. Seshacharyulu T, Medeiros SC, Frazier WG, Prasad YVRK (2000) Mater Sci Eng A 284:184

    Article  Google Scholar 

  22. Sherby OD, Caiigiuri RD, Kayaii ES, White RA (1981) In: Burke JJ, Mahrabian R (eds) Advances in metal processing. Plenum Press, New York, p 133

    Google Scholar 

  23. Wang K, Zeng W, Shao Y, Yongqing Z, Yigang Z (2009) Rare Metal Mater Eng 38:398

    CAS  Google Scholar 

  24. Semiatin SL, Seetharaman V, Weiss I (1999) Mater Sci Eng A 263:257

    Article  Google Scholar 

  25. Weiss I, Froes FH, Eylon D, Welsch GE (1986) Meter Trans A 17:1935

    Article  Google Scholar 

  26. Stefasson N, Semiatin SL (2003) Meter Trans A 34:691

    Article  Google Scholar 

  27. Wang K, Zeng W, Zhao Y, Lai Y, Zhou Y (2010) Mater Sci Eng A 527:2559

    Article  Google Scholar 

  28. Wang BF (2008) J Mater Sci 43:1576. doi:10.1007/s10853-007-2330-2

    Article  CAS  ADS  Google Scholar 

  29. Lewandowska M, Kurzydlowski KJ (2008) J Mater Sci 43:7299. doi:10.1007/s10853-008-2810-z

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports from the State Key Foundational Research Plan (No.2007CB613807) and the Program for New Century Excellent Talents in University (NCET-07-0696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaixuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Zeng, W., Zhao, Y. et al. Hot working of Ti-17 titanium alloy with lamellar starting structure using 3-D processing maps. J Mater Sci 45, 5883–5891 (2010). https://doi.org/10.1007/s10853-010-4667-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4667-1

Keywords

Navigation