Skip to main content
Erschienen in: Journal of Materials Science 5/2014

01.03.2014

Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size

verfasst von: Hao-Yang Mi, Xin Jing, Max R. Salick, Travis M. Cordie, Xiang-Fang Peng, Lih-Sheng Turng

Erschienen in: Journal of Materials Science | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rigid thermoplastic polyurethane (TPU)/hydroxyapatite (HA) scaffolds were prepared with micro HA (mHA) and nano HA (nHA) particles, respectively, via the thermally induced phase separation method. The effects of solvent and co-solvent, addition of sodium chloride (NaCl) porogen, and HA particle size were studied together with the morphology, compressive properties, and mineralization behavior of the scaffolds. Depending on the solvent, co-solvent, or porogen used, different porous structures were produced. In particular, a ladder-like morphology was obtained when dioxane (Di) was used as the solvent, whereas an interconnected porous structure was obtained by using dioxane and deionized water (DiW) as co-solvents. Rectangular pores with interconnected channels on the pore walls were achieved by using NaCl crystals as porogens. The TPU/nHA scaffolds showed stronger compressive properties than the TPU/mHA scaffolds and the pure TPU scaffolds. The scaffolds prepared using dioxane and water as co-solvents exhibit the greatest compressive modulus. Furthermore, TPU scaffolds with nHA particles had the ability to form bone apatite when soaked in simulated body fluid (SBF). After being soaked in SBF for 3 weeks, the weight percentage of formed apatite in the TPU/nHA-DiW scaffold was 9.2 %wt of the initial TPU content. Preliminary cytotoxicity tests were conducted using NIH 3T3 fibroblast cells. The high survival rate of these cells and the mineralization behavior suggest biocompatibility and high potential of these composites being used in bone tissue engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brighton CT, Shaman P, Heppenstall RB, Esterhai JL, Pollack SR, Friedenberg ZB (1995) Tibial nonunion treated with direct-current, capacitive coupling, or bone-graft. Clin Orthop Relat R 321:223–234 Brighton CT, Shaman P, Heppenstall RB, Esterhai JL, Pollack SR, Friedenberg ZB (1995) Tibial nonunion treated with direct-current, capacitive coupling, or bone-graft. Clin Orthop Relat R 321:223–234
2.
Zurück zum Zitat Fernyhough JC, Schimandle JJ, Weigel MC, Edwards CC, Levine AM (1992) Chronic donor site pain complicating bone-graft harvesting from the posterior iliac crest for spinal-fusion. Spine 17:1474–1480CrossRef Fernyhough JC, Schimandle JJ, Weigel MC, Edwards CC, Levine AM (1992) Chronic donor site pain complicating bone-graft harvesting from the posterior iliac crest for spinal-fusion. Spine 17:1474–1480CrossRef
3.
Zurück zum Zitat Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:20–27CrossRef Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:20–27CrossRef
4.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef
5.
Zurück zum Zitat Mikos AG, Thorsen AJ, Czerwonka LA et al (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef Mikos AG, Thorsen AJ, Czerwonka LA et al (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef
6.
Zurück zum Zitat Nakamatsu J, Torres FG, Troncoso OP, Yuan ML, Boccaccini AR (2006) Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules 7:3345–3355CrossRef Nakamatsu J, Torres FG, Troncoso OP, Yuan ML, Boccaccini AR (2006) Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules 7:3345–3355CrossRef
7.
Zurück zum Zitat Wang L, Shi J, Liu L, Secret E, Chen Y (2011) Fabrication of polymer fiber scaffolds by centrifugal spinning for cell culture studies. Microelectron Eng 88:1718–1721CrossRef Wang L, Shi J, Liu L, Secret E, Chen Y (2011) Fabrication of polymer fiber scaffolds by centrifugal spinning for cell culture studies. Microelectron Eng 88:1718–1721CrossRef
8.
Zurück zum Zitat Park SA, Kim HJ, Lee SH et al (2011) Fabrication of nano/microfiber scaffolds using a combination of rapid prototyping and electrospinning systems. Polym Eng Sci 51:1883–1890CrossRef Park SA, Kim HJ, Lee SH et al (2011) Fabrication of nano/microfiber scaffolds using a combination of rapid prototyping and electrospinning systems. Polym Eng Sci 51:1883–1890CrossRef
9.
Zurück zum Zitat Corre YM, Maazouz A, Duchet J, Reignier J (2011) Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure. J Supercrit Fluid 58:177–188CrossRef Corre YM, Maazouz A, Duchet J, Reignier J (2011) Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure. J Supercrit Fluid 58:177–188CrossRef
10.
Zurück zum Zitat Kramschuster A, Turng LS (2010) An Injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J Biomed Mater Res B 92B:366–376 Kramschuster A, Turng LS (2010) An Injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J Biomed Mater Res B 92B:366–376
11.
Zurück zum Zitat Rowlands AS, Lim SA, Martin D, Cooper-White JJ (2007) Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials 28:2109–2121CrossRef Rowlands AS, Lim SA, Martin D, Cooper-White JJ (2007) Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials 28:2109–2121CrossRef
12.
Zurück zum Zitat He LM, Zhang YQ, Zeng X et al (2009) Fabrication and characterization of poly(l-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid–liquid phase separation from a ternary polymer-solvent system. Polymer 50:4128–4138CrossRef He LM, Zhang YQ, Zeng X et al (2009) Fabrication and characterization of poly(l-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid–liquid phase separation from a ternary polymer-solvent system. Polymer 50:4128–4138CrossRef
13.
Zurück zum Zitat Lo H, Ponticiello MS, Leong KW (1995) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1:15–28CrossRef Lo H, Ponticiello MS, Leong KW (1995) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1:15–28CrossRef
14.
Zurück zum Zitat Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliver Rev 55:1613–1629CrossRef Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliver Rev 55:1613–1629CrossRef
15.
Zurück zum Zitat Li C, Wang LL, Yang Z, Kim G, Chen HF, Ge ZG (2012) A viscoelastic chitosan-modified three-dimensional porous poly(l-Lactide-co-epsilon-caprolactone) scaffold for cartilage tissue engineering. J Biomat Sci-Polym E 23:405–424CrossRef Li C, Wang LL, Yang Z, Kim G, Chen HF, Ge ZG (2012) A viscoelastic chitosan-modified three-dimensional porous poly(l-Lactide-co-epsilon-caprolactone) scaffold for cartilage tissue engineering. J Biomat Sci-Polym E 23:405–424CrossRef
16.
Zurück zum Zitat Montjovent MO, Mark S, Mathieu L et al (2008) Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone 42:554–564CrossRef Montjovent MO, Mark S, Mathieu L et al (2008) Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone 42:554–564CrossRef
17.
Zurück zum Zitat Mondrinos MJ, Dembzynski R, Lu L et al (2006) Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408CrossRef Mondrinos MJ, Dembzynski R, Lu L et al (2006) Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408CrossRef
18.
Zurück zum Zitat Lian C, Wei L, Yilin C (2012) Modification of fibrous PLGA scaffold or PLGA micro-particles with tripolyphosphate nanoparticles. J Tissue Eng Regen M 6:214CrossRef Lian C, Wei L, Yilin C (2012) Modification of fibrous PLGA scaffold or PLGA micro-particles with tripolyphosphate nanoparticles. J Tissue Eng Regen M 6:214CrossRef
19.
Zurück zum Zitat Buschmann J, Harter L, Gao SP et al (2012) Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. Injury 43:1689–1697CrossRef Buschmann J, Harter L, Gao SP et al (2012) Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. Injury 43:1689–1697CrossRef
20.
Zurück zum Zitat Hofmann A, Ritz U, Verrier S et al (2008) The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 29:4217–4226CrossRef Hofmann A, Ritz U, Verrier S et al (2008) The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 29:4217–4226CrossRef
21.
Zurück zum Zitat McClure MJ, Wolfe PS, Rodriguez IA, Bowlin GL (2011) Bioengineered vascular grafts: improving vascular tissue engineering through scaffold design. J Drug Deliv Sci Tec 21:211–227 McClure MJ, Wolfe PS, Rodriguez IA, Bowlin GL (2011) Bioengineered vascular grafts: improving vascular tissue engineering through scaffold design. J Drug Deliv Sci Tec 21:211–227
22.
Zurück zum Zitat Amoroso NJ, D’Amore A, Hong Y, Rivera CP, Sacks MS, Wagner WR (2012) Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomater 8:4268–4277CrossRef Amoroso NJ, D’Amore A, Hong Y, Rivera CP, Sacks MS, Wagner WR (2012) Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomater 8:4268–4277CrossRef
23.
Zurück zum Zitat Hausner T, Schmidhammer R, Zandieh S et al (2007) Nerve regeneration using tubular scaffolds from biodegradable polyurethane. Acta Neurochir Suppl 100:69–72CrossRef Hausner T, Schmidhammer R, Zandieh S et al (2007) Nerve regeneration using tubular scaffolds from biodegradable polyurethane. Acta Neurochir Suppl 100:69–72CrossRef
24.
Zurück zum Zitat Heo DN, Yang DH, Lee JB et al (2013) Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine. J Biomed Nanotechnol 9:511–515CrossRef Heo DN, Yang DH, Lee JB et al (2013) Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine. J Biomed Nanotechnol 9:511–515CrossRef
25.
Zurück zum Zitat Yoshii T, Hafeman AE, Nyman JS et al (2010) A sustained release of lovastatin from biodegradable elastomeric polyurethane scaffolds for enhanced bone regeneration. Tissue Eng Part A 16:2369–2379CrossRef Yoshii T, Hafeman AE, Nyman JS et al (2010) A sustained release of lovastatin from biodegradable elastomeric polyurethane scaffolds for enhanced bone regeneration. Tissue Eng Part A 16:2369–2379CrossRef
26.
Zurück zum Zitat Jack KS, Velayudhan S, Luckman P, Trau M, Grondahl L, Cooper-White J (2009) The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Acta Biomater 5:2657–2667CrossRef Jack KS, Velayudhan S, Luckman P, Trau M, Grondahl L, Cooper-White J (2009) The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Acta Biomater 5:2657–2667CrossRef
27.
Zurück zum Zitat Duan B, Wang M (2010) Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface 7:S615–S629CrossRef Duan B, Wang M (2010) Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface 7:S615–S629CrossRef
28.
Zurück zum Zitat Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/bioglass (R) composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429CrossRef Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/bioglass (R) composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429CrossRef
29.
Zurück zum Zitat Habibovic P, Gbureck U, Doillon CJ, Bassett DC, van Blitterswijk CA, Barralet JE (2008) Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29:944–953CrossRef Habibovic P, Gbureck U, Doillon CJ, Bassett DC, van Blitterswijk CA, Barralet JE (2008) Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29:944–953CrossRef
30.
Zurück zum Zitat Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138CrossRef Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138CrossRef
31.
Zurück zum Zitat Andric T, Wright LD, Taylor BL, Freeman JW (2012) Fabrication and characterization of three-dimensional electrospun scaffolds for bone tissue engineering. J Biomed Mater Res A 100A:2097–2105CrossRef Andric T, Wright LD, Taylor BL, Freeman JW (2012) Fabrication and characterization of three-dimensional electrospun scaffolds for bone tissue engineering. J Biomed Mater Res A 100A:2097–2105CrossRef
32.
Zurück zum Zitat Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S (2008) Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs 32:388–397CrossRef Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S (2008) Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs 32:388–397CrossRef
33.
Zurück zum Zitat Yang DZ, Jin Y, Ma GP, Chen XM, Lu FM, Nie J (2008) Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds. J Appl Polym Sci 110:3328–3335CrossRef Yang DZ, Jin Y, Ma GP, Chen XM, Lu FM, Nie J (2008) Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds. J Appl Polym Sci 110:3328–3335CrossRef
34.
Zurück zum Zitat Sheikh FA, Kanjwal MA, Macossay J, Barakat NAM, Kim HY (2012) A simple approach for synthesis, characterization and bioactivity of bovine bones to fabricate the polyurethane nanofiber containing hydroxyapatite nanoparticle. Express Polym Lett 6:41–53CrossRef Sheikh FA, Kanjwal MA, Macossay J, Barakat NAM, Kim HY (2012) A simple approach for synthesis, characterization and bioactivity of bovine bones to fabricate the polyurethane nanofiber containing hydroxyapatite nanoparticle. Express Polym Lett 6:41–53CrossRef
35.
Zurück zum Zitat Wang L, Zuo Y, Zou Q, Li YB (2011) Effect of composition on physical-chemical properties and biological properties of hydroxyapatite/aliphatic polyurethane scaffolds for bone tissue engineering. Chem J Chinese Univ 32:2453–2459 Wang L, Zuo Y, Zou Q, Li YB (2011) Effect of composition on physical-chemical properties and biological properties of hydroxyapatite/aliphatic polyurethane scaffolds for bone tissue engineering. Chem J Chinese Univ 32:2453–2459
36.
Zurück zum Zitat Kokubo T (1991) Bioactive glass-ceramics—properties and applications. Biomaterials 12:155–163CrossRef Kokubo T (1991) Bioactive glass-ceramics—properties and applications. Biomaterials 12:155–163CrossRef
37.
Zurück zum Zitat Kokubo T, Ito S, Huang ZT et al (1990) Ca, P-rich layer formed on high-strength bioactive glass-ceramic a-W. J Biomed Mater Res 24:331–343CrossRef Kokubo T, Ito S, Huang ZT et al (1990) Ca, P-rich layer formed on high-strength bioactive glass-ceramic a-W. J Biomed Mater Res 24:331–343CrossRef
38.
Zurück zum Zitat Ohtsuki C, Kushitani H, Kokubo T, Kotani S, Yamamuro T (1991) Apatite formation on the surface of ceravital-type glass-ceramic in the body. J Biomed Mater Res 25:1363–1370CrossRef Ohtsuki C, Kushitani H, Kokubo T, Kotani S, Yamamuro T (1991) Apatite formation on the surface of ceravital-type glass-ceramic in the body. J Biomed Mater Res 25:1363–1370CrossRef
39.
Zurück zum Zitat Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci-Mater M 14:201–209CrossRef Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci-Mater M 14:201–209CrossRef
40.
Zurück zum Zitat Li PJ, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Degroot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15CrossRef Li PJ, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Degroot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15CrossRef
41.
Zurück zum Zitat Deplaine H, Lebourg M, Ripalda P et al (2013) Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(l-lactic acid) scaffolds. J Biomed Mater Res B 101B:173–186CrossRef Deplaine H, Lebourg M, Ripalda P et al (2013) Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(l-lactic acid) scaffolds. J Biomed Mater Res B 101B:173–186CrossRef
42.
Zurück zum Zitat Peng F, Yu XH, Wei M (2011) In vitro cell performance on hydroxyapatite particles/poly(l-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomater 7:2585–2592CrossRef Peng F, Yu XH, Wei M (2011) In vitro cell performance on hydroxyapatite particles/poly(l-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomater 7:2585–2592CrossRef
43.
Zurück zum Zitat Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef
44.
Zurück zum Zitat Panda RN, Hsieh MF, Chung RJ, Chin TS (2003) FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids 64:193–199CrossRef Panda RN, Hsieh MF, Chung RJ, Chin TS (2003) FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids 64:193–199CrossRef
45.
Zurück zum Zitat Mobasherpour I, Heshajin MS, Kazemzadeh A, Zakeri M (2007) Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J Alloy Compd 430:330–333CrossRef Mobasherpour I, Heshajin MS, Kazemzadeh A, Zakeri M (2007) Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J Alloy Compd 430:330–333CrossRef
46.
Zurück zum Zitat Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P (1996) Biodegradable and macroporous polylactide implants for cell transplantation. 1. Preparation of macroporous polylactide supports by solid–liquid phase separation. Polymer 37:1027–1038CrossRef Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P (1996) Biodegradable and macroporous polylactide implants for cell transplantation. 1. Preparation of macroporous polylactide supports by solid–liquid phase separation. Polymer 37:1027–1038CrossRef
47.
Zurück zum Zitat Wang XH, Shi SA, Guo G et al (2011) Preparation and characterization of a porous scaffold based on poly(d, l-lactide) and N-hydroxyapatite by phase separation. J Biomat Sci-Polym E 22:1917–1929CrossRef Wang XH, Shi SA, Guo G et al (2011) Preparation and characterization of a porous scaffold based on poly(d, l-lactide) and N-hydroxyapatite by phase separation. J Biomat Sci-Polym E 22:1917–1929CrossRef
48.
Zurück zum Zitat Hench LL, Wilson J (1993) An introduction to bioceramics. World Scientific, London and SingaporeCrossRef Hench LL, Wilson J (1993) An introduction to bioceramics. World Scientific, London and SingaporeCrossRef
49.
Zurück zum Zitat Yu SC, Hariram KP, Kumar R, Cheang P, Aik KK (2005) In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials 26:2343–2352CrossRef Yu SC, Hariram KP, Kumar R, Cheang P, Aik KK (2005) In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials 26:2343–2352CrossRef
50.
Zurück zum Zitat Lluch AV, Ferrer GG, Pradas MM (2009) Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Colloid Surface B 70:218–225CrossRef Lluch AV, Ferrer GG, Pradas MM (2009) Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Colloid Surface B 70:218–225CrossRef
Metadaten
Titel
Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size
verfasst von
Hao-Yang Mi
Xin Jing
Max R. Salick
Travis M. Cordie
Xiang-Fang Peng
Lih-Sheng Turng
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7931-3

Weitere Artikel der Ausgabe 5/2014

Journal of Materials Science 5/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.