Skip to main content
Erschienen in: Journal of Materials Science 7/2014

01.04.2014

The synthesis of graphene oxide nanostructures for supercapacitors: a simple route

verfasst von: Nanting Li, Shaochun Tang, Yumin Dai, Xiangkang Meng

Erschienen in: Journal of Materials Science | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we report a simple strategy for synthesis of graphene oxide nanostructures with various morphologies including single-, few-layer, and three-dimensional networks. Morphology control is achieved by adding different amounts of Ni2+ into a one-step hydrothermal process. The involved growth mechanisms for the morphology control are discussed. A random arrangement of graphene oxide nanosheets is suggested to induce the networks’ formation. Ni2+ facilitates the formation of graphene oxide’s preferential face-to-face overlapping structure, and high Ni2+ concentrations render adjacent graphene oxide sheets to combine each other tightly to form closely packed, layered structures. Compared with single-, few-layer graphene oxide, the electrode prepared by three-dimensional networks has a mass specific capacitance of 352 F g−1 at v = 5 mV s−1, which is much higher than that of recently reported three-dimensional graphene oxide nanostructures (240 F g−1).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
2.
Zurück zum Zitat Li NT, Tang SC, Pan Y, Meng XK (2014) One-step and rapid synthesis of reduced graphene oxide supported Pt nanodendrites by a microwave-assisted simultaneous reduction. Mater Res Bull 49:119–125CrossRef Li NT, Tang SC, Pan Y, Meng XK (2014) One-step and rapid synthesis of reduced graphene oxide supported Pt nanodendrites by a microwave-assisted simultaneous reduction. Mater Res Bull 49:119–125CrossRef
3.
Zurück zum Zitat Sun YQ, Wu Q, Shi GQ (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132CrossRef Sun YQ, Wu Q, Shi GQ (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132CrossRef
4.
Zurück zum Zitat Hou JB, Shao YY, Ellis MW, Moore RB, Yi BL (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402CrossRef Hou JB, Shao YY, Ellis MW, Moore RB, Yi BL (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402CrossRef
5.
Zurück zum Zitat Liu YX, Dong XC, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307CrossRef Liu YX, Dong XC, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307CrossRef
6.
Zurück zum Zitat Huang YX, Dong XC, Shi YM, Li CM, Li LJ, Chen P (2010) Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2:1485–1488CrossRef Huang YX, Dong XC, Shi YM, Li CM, Li LJ, Chen P (2010) Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2:1485–1488CrossRef
7.
Zurück zum Zitat Huang YX, Dong XC, Liu YX, Li LJ, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21:12358–12362CrossRef Huang YX, Dong XC, Liu YX, Li LJ, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21:12358–12362CrossRef
8.
Zurück zum Zitat He SJ, Song B, Li D, Zhu CF, Qi WP, Wen YQ, Wang LH, Song SP, Fang HP, Fan CH (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459CrossRef He SJ, Song B, Li D, Zhu CF, Qi WP, Wen YQ, Wang LH, Song SP, Fang HP, Fan CH (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459CrossRef
9.
Zurück zum Zitat Wang LH, Pu KY, Li J, Qi XY, Li H, Zhang H, Fan CH, Liu B (2011) A graphene–conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia coli. Adv Mater 23:4386–4391CrossRef Wang LH, Pu KY, Li J, Qi XY, Li H, Zhang H, Fan CH, Liu B (2011) A graphene–conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia coli. Adv Mater 23:4386–4391CrossRef
10.
Zurück zum Zitat Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRef Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRef
11.
Zurück zum Zitat Huang YX, Sudibya HG, Fu DL, Xue RH, Dong XC, Li LJ, Chen P (2009) Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. Biosens Bioelectron 24:2716–2720CrossRef Huang YX, Sudibya HG, Fu DL, Xue RH, Dong XC, Li LJ, Chen P (2009) Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. Biosens Bioelectron 24:2716–2720CrossRef
12.
Zurück zum Zitat Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787CrossRef Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787CrossRef
13.
Zurück zum Zitat Huang YX, Chen P (2010) Nanoelectronic biosensing of dynamic cellular activities based on nanostructured materials. Adv Mater 22:2818–2823CrossRef Huang YX, Chen P (2010) Nanoelectronic biosensing of dynamic cellular activities based on nanostructured materials. Adv Mater 22:2818–2823CrossRef
14.
Zurück zum Zitat Dreyer DR, Park SY, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park SY, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
15.
Zurück zum Zitat Dreyer DR, Jia HP, Bielawski CW (2010) Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew Chem Int Ed 49:6813–6816 Dreyer DR, Jia HP, Bielawski CW (2010) Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew Chem Int Ed 49:6813–6816
16.
Zurück zum Zitat Dreyer DR, Jarvis KA, Ferreira PJ, Bielawski CW (2011) Graphite oxide as a dehydrative polymerization catalyst: a one-step synthesis of carbon-reinforced poly(phenylene methylene) composites. Macromolecules 44:7659–7667CrossRef Dreyer DR, Jarvis KA, Ferreira PJ, Bielawski CW (2011) Graphite oxide as a dehydrative polymerization catalyst: a one-step synthesis of carbon-reinforced poly(phenylene methylene) composites. Macromolecules 44:7659–7667CrossRef
17.
Zurück zum Zitat Gao YG, Ma D, Wang CL, Guan J, Bao XH (2011) Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem Commun 47:2432–2434CrossRef Gao YG, Ma D, Wang CL, Guan J, Bao XH (2011) Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem Commun 47:2432–2434CrossRef
18.
Zurück zum Zitat Dreyer DR, Jarvis KA, Ferreira PJ, Bielawski CW (2012) Graphite oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites. Polym Chem 3:757–766CrossRef Dreyer DR, Jarvis KA, Ferreira PJ, Bielawski CW (2012) Graphite oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites. Polym Chem 3:757–766CrossRef
19.
Zurück zum Zitat Jia HP, Dreyer DR, Bielawski CW (2011) C-H oxidation using graphite oxide. Tetrahedron 67:4431–4434CrossRef Jia HP, Dreyer DR, Bielawski CW (2011) C-H oxidation using graphite oxide. Tetrahedron 67:4431–4434CrossRef
20.
Zurück zum Zitat Park SJ, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park SJ, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
21.
Zurück zum Zitat Bissessur R, Scully SF (2007) Intercalation of solid polymer electrolytes into graphite oxide. Solid State Ionics 178:877–882CrossRef Bissessur R, Scully SF (2007) Intercalation of solid polymer electrolytes into graphite oxide. Solid State Ionics 178:877–882CrossRef
22.
Zurück zum Zitat Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascόn JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascόn JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef
23.
Zurück zum Zitat Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723CrossRef Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723CrossRef
24.
Zurück zum Zitat Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415CrossRef Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415CrossRef
25.
Zurück zum Zitat Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583CrossRef Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583CrossRef
26.
Zurück zum Zitat Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRef Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRef
27.
Zurück zum Zitat Smirnov VA, Denisov NN, Ukshe AE, Shulga YM (2013) Conductivity of graphene oxide films: dependence from solvents and photoreduction. Chem Phys Lett 583:155–159CrossRef Smirnov VA, Denisov NN, Ukshe AE, Shulga YM (2013) Conductivity of graphene oxide films: dependence from solvents and photoreduction. Chem Phys Lett 583:155–159CrossRef
28.
Zurück zum Zitat Shao YY, Wang J, Engelhard M, Wang CM, Lin YH (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20:743–748CrossRef Shao YY, Wang J, Engelhard M, Wang CM, Lin YH (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20:743–748CrossRef
29.
Zurück zum Zitat Cao YC, Xu CX, Wu X, Wang X, Xing L, Scott K (2011) A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sour 196:8377–8382CrossRef Cao YC, Xu CX, Wu X, Wang X, Xing L, Scott K (2011) A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sour 196:8377–8382CrossRef
30.
Zurück zum Zitat Zhao Q, Qiu DF, Wang XY, Liu TX (2011) Morphology and mechanical properties of chitosan/graphene oxide nanocomposites. Acta Chim Sinica 69:1259–1263 Zhao Q, Qiu DF, Wang XY, Liu TX (2011) Morphology and mechanical properties of chitosan/graphene oxide nanocomposites. Acta Chim Sinica 69:1259–1263
31.
Zurück zum Zitat Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206CrossRef Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206CrossRef
32.
Zurück zum Zitat An XH, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295–4301CrossRef An XH, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295–4301CrossRef
33.
Zurück zum Zitat Choi EY, Han TH, Hong JY, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem 20:1907–1912CrossRef Choi EY, Han TH, Hong JY, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem 20:1907–1912CrossRef
34.
Zurück zum Zitat Jang JH, Ullal CK, Gorishnyy T, Tsukruk VV, Thomas EL (2006) Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. Nano Lett 6:740–743CrossRef Jang JH, Ullal CK, Gorishnyy T, Tsukruk VV, Thomas EL (2006) Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. Nano Lett 6:740–743CrossRef
35.
Zurück zum Zitat Jang JH, Jhaveri SJ, Rasin B, Koh CY, Ober CK, Thomas EL (2008) Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications. Nano Lett 8:1456–1460CrossRef Jang JH, Jhaveri SJ, Rasin B, Koh CY, Ober CK, Thomas EL (2008) Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications. Nano Lett 8:1456–1460CrossRef
36.
Zurück zum Zitat Jang JH, Dendukuri D, Hatton TA, Thomas EL, Doyle PS (2007) A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. Angew Chem Int Ed 46:9027–9031CrossRef Jang JH, Dendukuri D, Hatton TA, Thomas EL, Doyle PS (2007) A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. Angew Chem Int Ed 46:9027–9031CrossRef
37.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
38.
Zurück zum Zitat Cote LJ, Kim F, Huang JX (2009) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049CrossRef Cote LJ, Kim F, Huang JX (2009) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049CrossRef
39.
Zurück zum Zitat Luan F, Wang GM, Ling YC, Lu XH, Wang HY, Tong YX, Liu XX, Li Y (2013) High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5:7984–7990CrossRef Luan F, Wang GM, Ling YC, Lu XH, Wang HY, Tong YX, Liu XX, Li Y (2013) High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5:7984–7990CrossRef
40.
Zurück zum Zitat Chen S, Zhu JW, Qiu L, Li D, Wang X (2013) Facile fabrication of nanoparticles confined in graphene films and their electrochemical properties. Chem Eur J 19:7631–7636CrossRef Chen S, Zhu JW, Qiu L, Li D, Wang X (2013) Facile fabrication of nanoparticles confined in graphene films and their electrochemical properties. Chem Eur J 19:7631–7636CrossRef
41.
Zurück zum Zitat Chen X, Chen XH, Zhang FQ, Yang Z, Huang SM (2013) One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J Power Sour 243:555–561CrossRef Chen X, Chen XH, Zhang FQ, Yang Z, Huang SM (2013) One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J Power Sour 243:555–561CrossRef
42.
Zurück zum Zitat Wang AM, Wang HL, Zhang SY, Mao CJ, Song JM, Niu HL, Jin BK, Tian YP (2013) Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Appl Surf Sci 282:704–708CrossRef Wang AM, Wang HL, Zhang SY, Mao CJ, Song JM, Niu HL, Jin BK, Tian YP (2013) Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Appl Surf Sci 282:704–708CrossRef
43.
Zurück zum Zitat Jiang H, Yang LP, Li CZ, Yan CY, Lee PS, Ma J (2011) High-rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ Sci 4:1813–1819CrossRef Jiang H, Yang LP, Li CZ, Yan CY, Lee PS, Ma J (2011) High-rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ Sci 4:1813–1819CrossRef
44.
Zurück zum Zitat Wang DW, Li F, Wu ZS, Ren WC, Cheng HM (2009) Electrochemical interfacial capacitance in multilayer graphene sheets: dependence on number of stacking layers. Electrochem Commun 11:1729–1732CrossRef Wang DW, Li F, Wu ZS, Ren WC, Cheng HM (2009) Electrochemical interfacial capacitance in multilayer graphene sheets: dependence on number of stacking layers. Electrochem Commun 11:1729–1732CrossRef
45.
Zurück zum Zitat Randin JP, Yeager E (1971) Differential capacitance study of stress-annealed pyrolytic graphite electrodes. J Electrochem Soc 118:711–714CrossRef Randin JP, Yeager E (1971) Differential capacitance study of stress-annealed pyrolytic graphite electrodes. J Electrochem Soc 118:711–714CrossRef
46.
Zurück zum Zitat Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41:1633–1639CrossRef Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41:1633–1639CrossRef
47.
Zurück zum Zitat Wang LH, Fujita M, Inagaki M (2006) Relationship between pore surface areas and electric double layer capacitance in non-aqueous electrolytes for air-oxidized carbon spheres. Electrochim Acta 51:4096–4102CrossRef Wang LH, Fujita M, Inagaki M (2006) Relationship between pore surface areas and electric double layer capacitance in non-aqueous electrolytes for air-oxidized carbon spheres. Electrochim Acta 51:4096–4102CrossRef
48.
Zurück zum Zitat Hantel MM, Kaspar T, Nesper R, Wokaun A, Kötz R (2011) Partially reduced graphite oxide for supercapacitor electrodes: effect of graphene layer spacing and huge specific capacitance. Electrochem Commun 13:90–92CrossRef Hantel MM, Kaspar T, Nesper R, Wokaun A, Kötz R (2011) Partially reduced graphite oxide for supercapacitor electrodes: effect of graphene layer spacing and huge specific capacitance. Electrochem Commun 13:90–92CrossRef
49.
Zurück zum Zitat Meng FC, Zhang XT, Xu B, Yue SF, Guo H, Luo YJ (2011) Alkali-treated graphene oxide as a solid base catalyst: synthesis and electrochemical capacitance of graphene/carbon composite aerogels. J Mater Chem 21:18537–18539CrossRef Meng FC, Zhang XT, Xu B, Yue SF, Guo H, Luo YJ (2011) Alkali-treated graphene oxide as a solid base catalyst: synthesis and electrochemical capacitance of graphene/carbon composite aerogels. J Mater Chem 21:18537–18539CrossRef
50.
Zurück zum Zitat Salgado S, Pu L, Maheshwari V (2012) Targeting chemical morphology of graphene oxide for self-assembly and subsequent templating of nanoparticles: a composite approaching capacitance limits in graphene. J Phys Chem C 116:12124–12130CrossRef Salgado S, Pu L, Maheshwari V (2012) Targeting chemical morphology of graphene oxide for self-assembly and subsequent templating of nanoparticles: a composite approaching capacitance limits in graphene. J Phys Chem C 116:12124–12130CrossRef
51.
Zurück zum Zitat Zhang L, Shi GQ (2011) Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 115:17206–17212CrossRef Zhang L, Shi GQ (2011) Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 115:17206–17212CrossRef
52.
Zurück zum Zitat Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef
53.
Zurück zum Zitat Maiyalagan T, Dong XC, Chen P, Wang X (2012) Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. J Mater Chem 22:5286–5290CrossRef Maiyalagan T, Dong XC, Chen P, Wang X (2012) Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application. J Mater Chem 22:5286–5290CrossRef
Metadaten
Titel
The synthesis of graphene oxide nanostructures for supercapacitors: a simple route
verfasst von
Nanting Li
Shaochun Tang
Yumin Dai
Xiangkang Meng
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7986-1

Weitere Artikel der Ausgabe 7/2014

Journal of Materials Science 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.