Skip to main content
Log in

Role of bismuth in nano-structured doped TiO2 photocatalyst prepared by environmentally benign soft synthesis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An environmentally benign synthesis method was used to prepare a nearly uniform dispersion of TiO2 nanoparticles modified by bismuth for photocatalytic purposes. The role of bismuth in the catalyst structure was evaluated using numerous methods such as XRPD, HTXRPD, TEM and HRTEM, and XPS, as well as Raman, FTIR, and UV–Vis spectroscopy. The bismuth doping significantly improved the photocatalytic performance of azo dye RB5 discoloration due to the formation of surface Bi3+ species and the abundant hydroxylation of the catalyst surface. The great advantage of this procedure lies in the low temperature preparation under ambient pressure without use of the titanium organometallic precursors. Therefore, this developed synthesis procedure could be easily adapted to the industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425

    Article  Google Scholar 

  2. Liu G, Wang LZ, Yang HG, Cheng HM, Lu GQ (2010) Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mater Chem 20:831–843

    Article  Google Scholar 

  3. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A 359:25–40

    Article  Google Scholar 

  4. Karakitsou KE, Verykios XE (1993) Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage. J Phys Chem 97:1184–1189

    Article  Google Scholar 

  5. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293

    Article  Google Scholar 

  6. Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  7. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    Article  Google Scholar 

  8. Wang J, Jing LQ, Xue LP, Qu YC, Fu HG (2008) Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution. J Hazard Mater 160:208–212

    Article  Google Scholar 

  9. Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ (2013) Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J Nanopart Res 15:1669

    Article  Google Scholar 

  10. Wu YQ, Lu GX, Li SB (2009) The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of Rhodamine B. J Phys Chem C 113:9950–9955

    Article  Google Scholar 

  11. Reddy PAK, Srinivas B, Kala P, Kumari VD, Subrahmanyam M (2011) Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide. Mater Res Bull 46:1766–1771

    Article  Google Scholar 

  12. Rengaraj S, Li XZ, Tanner PA, Pan ZF, Pang GKH (2006) Photocatalytic degradation of methylparathion—an endocrine disruptor by Bi3+-doped TiO2. J Mol Catal A 247:36–43

    Article  Google Scholar 

  13. Yang J, Dai J, Li JT (2013) Visible-light-induced photocatalytic reduction of Cr(VI) with coupled Bi2O3/TiO2 photocatalyst and the synergistic bisphenol A oxidation. Environ Sci Pollut Res Int 20:2435–2447

    Article  Google Scholar 

  14. Wang Y, Wang Y, Meng YL et al (2008) A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2. J Phys Chem C 112:6620–6626

    Article  Google Scholar 

  15. Naik B, Parida KM, Behera GC (2011) Facile synthesis of Bi2O3/TiO2−x N x and its direct solar-light-driven photocatalytic selective hydroxylation of phenol. Chemcatchem 3:311–318

    Article  Google Scholar 

  16. Li HY, Wang DJ, Wang P, Fan HM, Xie TF (2009) Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres. Chem-Eur J 15:12521–12527

    Article  Google Scholar 

  17. Ji TH, Yang F, Lv YY, Zhou JY, Sun JY (2009) Synthesis and visible-light photocatalytic activity of Bi-doped TiO2 nanobelts. Mater Lett 63:2044–2046

    Article  Google Scholar 

  18. An’amt MN, Radiman S, Huang NM et al (2010) Sol-gel hydrothermal synthesis of bismuth-TiO2 nanocubes for dye-sensitized solar cell. Ceram Int 36:2215–2220

    Article  Google Scholar 

  19. Xu JJ, Chen MD, Fu DG (2011) Study on highly visible light active Bi-doped TiO2 composite hollow sphere. Appl Surf Sci 257:7381–7386

    Article  Google Scholar 

  20. Sajjad S, Leghari SAK, Chen F, Zhang JL (2010) Bismuth-doped ordered mesoporous TiO2: visible-light catalyst for simultaneous degradation of phenol and chromium. Chem-Eur J 16:13795–13804

    Article  Google Scholar 

  21. Shamaila S, Sajjad AKL, Chen F, Zhang JL (2010) Study on highly visible light active Bi2O3 loaded ordered mesoporous titania. Appl Catal B 94:272–280

    Article  Google Scholar 

  22. Bagwasi S, Niu YX, Nasir M, Tian BZ, Zhang JL (2013) The study of visible light active bismuth modified nitrogen doped titanium dioxide photocatalyst: role of bismuth. Appl Surf Sci 264:139–147

    Article  Google Scholar 

  23. Cerny Z, Stengl V (2008) CZ200800139-A3 and CZ301006-B6

  24. (2000) JCPDS PDF 2 Database, Release 50, International Centre for Diffraction Data, Newtown Square, PA

  25. (2008) ICSD Database FIZ, Karlsruhe, Germany

  26. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  27. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  Google Scholar 

  28. Wu QH (1989) Extraction of extinction coefficient of weak absorbing thin-films from special absorption. J Phys D 22:1384–1385

    Article  Google Scholar 

  29. Roos A (1993) Use of an integrating sphere in solar-energy research. Sol Energ Mat Sol C 30:77–94

    Article  Google Scholar 

  30. Stengl V, Houskova V, Bakardjieva S, Murafa N, Havlin V (2008) Optically transparent titanium dioxide particles incorporated in poly(hydroxyethyl methacrylate) thin layers. J Phys Chem C 112:19979–19985

    Article  Google Scholar 

  31. Stengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114:217–226

    Article  Google Scholar 

  32. Chang JA, Vithal M, Baek IC, Seok SI (2009) Morphological and phase evolution of TiO2 nanocrystals prepared from peroxotitanate complex aqueous solution: influence of acetic acid. J Solid State Chem 182:749–756

    Article  Google Scholar 

  33. Stengl V, Matys Grygar T, Henych J, Kormunda M (2012) Hydrogen peroxide route to Sn-doped titania photocatalysts. Chem Cent J 6:113

    Article  Google Scholar 

  34. Stengl V, Velicka J, Marikova M, Matys Grygar T (2011) New generation photocatalysts: how tungsten influences the nanostructure and photocatalytic activity of TiO2 in the UV and visible regions. ACS Appl Mater Interfaces 3:4014–4023

    Article  Google Scholar 

  35. Chang SS, Clair B, Ruelle J et al (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030

    Article  Google Scholar 

  36. Kim KS, Winograd N (1975) Charge-transfer shake-up satellites in X-ray photoelectron-spectra of cations and anions of SrTiO3, TiO2 and Sc2O3. Chem Phys Lett 31:312–317

    Article  Google Scholar 

  37. Guillemot F, Porte MC, Labrugere C, Baquey C (2002) Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications. J Colloid Interface Sci 255:75–78

    Article  Google Scholar 

  38. Pouilleau J, Devilliers D, Groult H, Marcus P (1997) Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy. J Mater Sci 32:5645–5651. doi:10.1023/A:1018645112465

    Article  Google Scholar 

  39. Mathur S, Kuhn P (2006) CVD of titanium oxide coatings: comparative evaluation of then-nal and plasma assisted processes. Surf Coat Technol 201:807–814

    Article  Google Scholar 

  40. Stefanov P, Shipochka M, Stefchev P, Raicheva Z, Lazarova V, Spassov L (2008) XPS characterization of TiO2 layers deposited on quartz plates. J Phys Conf Ser 100:012039

    Article  Google Scholar 

  41. Wu XH, Qin W, He WD (2007) Thin bismuth oxide films prepared through the sol–gel method as photocatalyst. J Mol Catal A 261:167–171

    Article  Google Scholar 

  42. Li Q, Liu H, Dong F, Fu M (2013) Hydrothermal formation of N-doped (BiO)2CO3 honeycomb-like microspheres photocatalysts with bismuth citrate and dicyandiamide as precursors. J Colloid Interface Sci 408:33–42

    Article  Google Scholar 

  43. Koura N, Kohara S, Takeuchi K et al (1996) Alkali carbonates: Raman spectroscopy, ab initio calculations, and structure. J Mol Struct 382:163–169

    Article  Google Scholar 

  44. Scheetz BE, White WB (1977) Vibrational-spectra of alkaline-earth double carbonates. Am Mineral 62:36–50

    Google Scholar 

  45. Arora AK, Rajalakshmi M, Ravindran TR, Sivasubramanian V (2007) Raman spectroscopy of optical phonon confinement in nanostructured materials. J Raman Spectrosc 38:604–617

    Article  Google Scholar 

  46. Sahoo S, Arora AK, Sridharan V (2009) Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J Phys Chem C 113:16927–16933

    Article  Google Scholar 

  47. Topalian Z, Niklasson GA, Granqvist CG, Osterlund L (2009) Photo-fixation of SO2 in nanocrystalline TiO2 films prepared by reactive DC magnetron sputtering. Thin Solid Films 518:1341–1344

    Article  Google Scholar 

  48. Serpone N, Emeline AV (2012) Semiconductor photocatalysis—past, present, and future outlook. J Phys Chem Lett 3:673–677

    Article  Google Scholar 

  49. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations—a review. Appl Catal B 49:1–14

    Article  Google Scholar 

  50. Stengl V, Matys Grygar T (2011) The simplest way to iodine-doped anatase for photocatalysts activated by visible light. Int J Photoenergy 2011:13. doi:10.1155/2011/685935

Download references

Acknowledgements

We acknowledge project OP VK ENVIMOD CZ.1.07/2.2.00/28.0205. JH and VS thank T. Matys Grygar for assistance with interpretation of the results and P. Bezdička and K. Šafářová for assistance with the XRD and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Henych.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2011 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henych, J., Štengl, V., Kormunda, M. et al. Role of bismuth in nano-structured doped TiO2 photocatalyst prepared by environmentally benign soft synthesis. J Mater Sci 49, 3560–3571 (2014). https://doi.org/10.1007/s10853-014-8083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8083-9

Keywords

Navigation