Skip to main content
Log in

Doping-induced electron density modification at lattice sites of ZnO:Ga nanostructures: effects on vibrational and optical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effects of Ga doping on the morphology, microstructure, electron density distribution, and optical properties of hydrothermally grown ZnO nanostructures have been studied by means of scanning electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction, and the maximum entropy methods. It has been shown that while Ga incorporation in ZnO lattice does not result in a large distortion of its wurtzite structure, it affects substantially the electronic charge distribution along the Zn–O bonds. Anisotropic redistribution of the electron charge density around the cation sites consolidates the assumption that the Ga atoms in doped nanostructures incorporate by substituting Zn atoms. The formation of a high density of point defects modifies the lattice dynamics of ZnO; in addition, it introduces a pronounced band-tail in the forbidden band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hong CS, Park HH, Moon J, Park HH (2006) Effect of metal (Al, Ga, and In)-dopants and/or Ag-nanoparticles on the optical and electrical properties of ZnO thin films. Thin Solid Films 515:957–960

    Article  Google Scholar 

  2. Bethke S, Pan H, Wessels B (1988) Luminescence of heteroepitaxial zinc oxide. Appl Phys Lett 52:138–140

    Article  Google Scholar 

  3. Choopun S, Vispute RD, Woch W, Balsamo A, Sharma RP, Venkatesan T, Iliadis A, Look DC (1999) Oxygen Pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire. Appl Phys Lett 75:3947–3949

    Article  Google Scholar 

  4. Wenas WW, Yamada A, Takahashi K, Yoshino M, Konagai M (1991) Electrical and optical properties of boron-doped ZnO thin films for solar cells grown by metal organic chemical vapor deposition. J Appl Phys 70:7119–7123

    Article  Google Scholar 

  5. Agura H, Suzuki A, Matsushita T, Aoki T, Okuda M (2003) Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 445:263–267

    Article  Google Scholar 

  6. Ko HJ, Chen YF, Hong SK, Wenisch H, Yao T, Look DC (2000) Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl Phys Lett 77:3761–3763

    Article  Google Scholar 

  7. Hu J, Gordon RG (1993) Electrical and optical properties of indium doped zinc oxide films prepared by atmospheric pressure chemical vapor deposition. Mater Res Soc Symp Proc 283:891–896

    Article  Google Scholar 

  8. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35–S44

    Article  Google Scholar 

  9. Gabás M, Landa-Cánovas A, Costa-Krämer J, Agulló-Rueda F, González-Elipe AR, Díaz-Carrascp P, Hernández-Moro J, Lorite I, Herrero P, Castillero P, Barranco A, Ramon Ramos-Barrado J (2013) Differences in n-type doping efficiency between Al– and Ga–ZnO films. J Appl Phys 113:9–163709

    Article  Google Scholar 

  10. Xu C, Kim M, Chun J, Kim D (2005) Growth of Ga-doped ZnO nanowires by two-step vapor phase method. Appl Phys Lett 86:3–133107

    Google Scholar 

  11. Özgür Ü, Hofstetter D, Morkoc H (2010) ZnO devices and applications: a review of current status and future prospects. Proc IEEE 98:1255–1268

    Article  Google Scholar 

  12. Ahmad M, Zhu J (2011) ZnO based advanced functional nanostructures: synthesis, properties and applications. J Mater Chem 21:599–614

    Article  Google Scholar 

  13. Djurišić AB, Chen XY, Leung YH, Ng AMC (2012) ZnO nanostructures: growth, properties and applications. J Mater Chem 22:6526–6535

    Article  Google Scholar 

  14. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  15. McCusker LB, Von Dreele RB, Cox DE, Loüer D, Scardi P (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50

    Article  Google Scholar 

  16. Kumazawa S, Kubota Y, Takata M, Sakata M, Ishibashi Y (1993) MEED: a program package for electron density distribution calculation by the maximum entropy method. J Appl Crystallogr 26:453–457

    Article  Google Scholar 

  17. Pineda-Hernandez G, Escobedo-Morales A, Pal U, Chigo-Anota E (2012) Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures. Mater Chem Phys 135:810–817

    Article  Google Scholar 

  18. West AR (1984) Solid state chemistry and its applications. Wiley, Great Britain

    Google Scholar 

  19. ICDD (1997) Joint committee powder diffraction standards, Card No. 36-1451, version 1.30, Database of the international center for diffraction data, 12, campus boulevard, Newton square, Pennsylvania, 19073-3273, USA

  20. Yoon MH, Lee SH, Park HL, Kim HK, Jang MS (2002) Solid solubility limits of Ga and Al in ZnO. J Mater Sci Lett 21:1703–1704

    Article  Google Scholar 

  21. Wang R, Sleight AW, Cleary D (1996) High conductivity in Ga doped ZnO powders. Chem Mater 8:433–439

    Article  Google Scholar 

  22. Petříček V, Dušek M, Palatinus L (2006) Jana 2006: The crystallographic computing system. Institute of Physics, Praha

    Google Scholar 

  23. Hahn T (2005) International tables for crystallography. Space group symmetry, vol A. Springer, The Netherlands

    Google Scholar 

  24. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:103–041301

    Article  Google Scholar 

  25. Sheu JK, Shu KW, Lee ML, Tun CJ, Chi GC (2007) Effect of thermal annealing on Ga-doped ZnO films prepared by magnetron sputtering. J Electrochem Soc 154:H521–H524

    Article  Google Scholar 

  26. Saravanan R (2008) Grain software. Private communication

  27. Guinier A (1994) X-ray diffraction in crystals, imperfect crystals and amorphous bodies. Dover Publications, New York

    Google Scholar 

  28. Izumi F, Dilanian RA (2002) Recent research developments in physics, Part II, vol 3. Transworld Research Network, Trivandrum

    Google Scholar 

  29. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  30. Hardcastle FD, Wachs IE (1991) Determination of vanadium–oxygen bond distances and bond orders by Raman spectroscopy. J Phys Chem 95:5031–5041

    Article  Google Scholar 

  31. Dong S, Padmakumar R, Banerjee R, Spiro TG (1996) Resonance Raman Co–C stretching frequencies reflect bond strength changes in alkyl cobalamins, but are unaffected by trans-ligand substitution. J Am Chem Soc 118:9182–9183

    Article  Google Scholar 

  32. Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev EM, Lorenz M, Grundmann M (2003) Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga and Li. Appl Phys Lett 83:1974–1976

    Article  Google Scholar 

  33. Wang X, Xu J, Yu X, Xue K, Yu J, Zhao X (2007) Structural evidence of secondary phase segregation from the Raman vibrational modes in Zn1−xCoxO (0 < x < 0.6). Appl Phys Lett 91:3–031908

    Google Scholar 

  34. Windisch CF, Exarhos GJ, Owings RR (2004) Vibrational spectroscopic study of the site occupancy distribution of cations in nickel cobalt oxides. J Appl Phys 95:5435–5442

    Article  Google Scholar 

  35. Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77

    Article  Google Scholar 

  36. Escobedo-Morales A, Sánchez Mora E, Pal U (2007) Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev Mex Fis S53:18–22

    Google Scholar 

  37. Halperin BI, Lax M (1966) Impurity-band tails in the high-density limit. I. Minimum counting methods. Phys Rev 148:722–740

    Article  Google Scholar 

  38. Burstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93:632–633

    Article  Google Scholar 

  39. Moss TS (1954) The interpretation of the properties of indium antimonide. Proc Phys Soc London B 76:775–782

    Article  Google Scholar 

  40. Wang R, King LLH, Sleight AW (1996) Highly conducting transparent thin films based on zinc oxide. J Mater Res 11:1659–1664

    Article  Google Scholar 

  41. Iribarren A, Castro-Rodríguez R, Sosa V, Peña JL (1998) Band-tail parameter modeling in semiconductor materials. Phys Rev B 58:1907–1911

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the CONACyT, Mexico (Grants# CB-2010/151767 & CB-2011/168027) and VIEP-BUAP. The authors are also grateful to the Madura College, Tamil Nadu, India and SAIF, Cochin University, India for extending their experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saravanakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, S., Escobedo-Morales, A., Pal, U. et al. Doping-induced electron density modification at lattice sites of ZnO:Ga nanostructures: effects on vibrational and optical properties. J Mater Sci 49, 5529–5536 (2014). https://doi.org/10.1007/s10853-014-8242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8242-z

Keywords

Navigation