Skip to main content
Log in

Metal ion biosorption on chitosan for the synthesis of advanced materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chitosan is an aminopolysaccharide that binds metal ions through different mechanisms such as ion exchange, chelation or formation of ternary complex. The sorption performance depends on the characteristics of the solution (pH, presence of ligands, metal speciation) and the properties of the biopolymer (crystallinity, degree of deacetylation, molecular weight). Sorption performance is also controlled by the accessibility and availability of reactive groups (diffusion properties). These interactions chitosan/metal ions can be used for environmental applications (recovery of toxic or valuable metals) but also for the synthesis of new materials. Hybrid materials (chitosan/metal ion composites) can thus be used for manufacturing new sorbents with improved functionalities, supported catalysts, antimicrobial supports and sensors. The physical versatility of the biopolymer is an important criterion for designing these new materials: The conditioning of the material under the form of hydrogel beads, membranes, fibers and hollow fibers, foams and sponges enhances sorption performance and allows developing new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Volesky B (2003) Sorption & Biosorption. BV Sorbex Inc, Montréal (Canada)

    Google Scholar 

  2. Roberts GAF (1992) Chitin chemistry. The Macmillan Press Limited, London

    Google Scholar 

  3. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93

    Article  Google Scholar 

  4. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  Google Scholar 

  5. Varum KM, Anthonsen MW, Grasdalen H, Smidsrod O (1991) High-field NMR-spectroscopy of partially N-deacetylated chitins (chitosans). 3. C-13-NMR studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydr Res 217:19–27

    Article  Google Scholar 

  6. Jung J, Zhao Y (2011) Characteristics of deacetylation and depolymerization of beta-chitin from jumbo squid (Dosidicus gigas) pens. Carbohydr Res 346:1876–1884

    Article  Google Scholar 

  7. Pacheco N, Garnica-Gonzalez M, Gimeno M, Barzana E, Trombotto S, David L, Shirai K (2011) Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules 12:3285–3290

  8. Jaworska M, Sakurai K, Gaudon P, Guibal E (2003) Influence of chitosan characteristics on polymer properties. I: crystallographic properties. Polym Int 52:198–205

  9. Qun G, Ajun W, Yong Z (2007) Effect of reacetylation and degradation on the chemical and crystal structures of chitosan. J Appl Polym Sci 104:2720–2728

    Article  Google Scholar 

  10. Notin L, Viton C, David L, Alcouffe P, Rochas C, Domard A (2006) Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: influence of the dry-jet-stretching step and ageing. Acta Biomater 2:387–402

    Article  Google Scholar 

  11. Sorlier P, Denuziere A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2:765–772

    Article  Google Scholar 

  12. Kuncoro EP, Roussy J, Guibal E (2005) Mercury recovery by polymer-enhanced ultrafiltration: comparison of chitosan and poly(ethylenimine) used as macroligand. Sep Sci Technol 40:659–684

    Article  Google Scholar 

  13. Guibal E, Milot C, Roussy J (2000) Influence of hydrolysis mechanisms on molybdate sorption isotherms using chitosan. Sep Sci Technol 35:1021–1038

    Article  Google Scholar 

  14. Milot C, McBrien J, Allen S, Guibal E (1998) Influence of physicochemical and structural characteristics of chitosan flakes on molybdate sorption. J Appl Polym Sci 68:571–580

    Article  Google Scholar 

  15. Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind Eng Chem Res 37:1454–1463

    Article  Google Scholar 

  16. Guzman J, Saucedo I, Navarro R, Revilla J, Guibal E (2002) Vanadium interactions with chitosan: influence of polymer protonation and metal speciation. Langmuir 18:1567–1573

    Article  Google Scholar 

  17. Piron E, Accominotti M, Domard A (1997) Interaction between chitosan and uranyl ions. Role of physical and physicochemical parameters on the kinetics of sorption. Langmuir 13:1653–1658

    Article  Google Scholar 

  18. Ruiz M, Sastre A, Guibal E (2002) Pd and Pt recovery using chitosan gel beads. I. Influence of the drying process on diffusion properties. Sep Sci Technol 37:2143–2166

    Article  Google Scholar 

  19. Valentin R, Molvinger K, Quignard F, Brunel D (2003) Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New J Chem 27:1690–1692

    Article  Google Scholar 

  20. Sicupira D, Campos K, Vincent T, Leao V, Guibal E (2010) Palladium and platinum sorption using chitosan-based hydrogels. Adsorption 16:127–139

    Article  Google Scholar 

  21. Desorme M, Montembault A, Lucas J-M, Rochas C, Bouet T, David L (2013) Spinning of hydroalcoholic chitosan solutions. Carbohydr Polym 98:50–63

    Article  Google Scholar 

  22. Modrzejewska Z, Eckstein W (2004) Chitosan hollow fiber membranes. Biopolymers 73:61–68

    Article  Google Scholar 

  23. Kaminski W, Modrzejewska Z (1997) Application of chitosan membranes in separation of heavy metal ions. Sep Sci Technol 32:2659–2668

    Article  Google Scholar 

  24. Meneghetti E, Baroni P, Vieira RS, Carlos MG, da Silva MM, Beppu (2010) Dynamic adsorption of chromium ions onto natural and cross linked chitosan membranes for wastewater treatment. Mater Res 13:89–94

    Article  Google Scholar 

  25. Vieira RS, Beppu MM (2006) Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids Surf A 279:196–207

    Article  Google Scholar 

  26. Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142

    Article  Google Scholar 

  27. Guibal E, Cambe S, Bayle S, Taulemesse J-M, Vincent T (2013) Silver/chitosan/cellulose fibers foam composites: from synthesis to antibacterial properties. J Colloid Interface Sci 393:411–420

    Article  Google Scholar 

  28. Ji C, Annabi N, Khademhosseini A, Dehghani F (2011) Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 7:1653–1664

    Article  Google Scholar 

  29. Tsioptsias C, Paraskevopoulos MK, Christofilos D, Andrieux R, Panayiotou C (2011) Polymeric hydrogels and supercritical fluids: the mechanism of hydrogel foaming. Polymer 52:2819–2826

    Article  Google Scholar 

  30. Vincent T, Guibal E (2000) Non-dispersive liquid extraction of Cr(VI) by TBP/Aliquat 336 using chitosan-made hollow fiber. Solvent Extr Ion Exch 18:1241–1260

    Article  Google Scholar 

  31. Vincent C, Hertz A, Vincent T, Barré Y, Guibal E (2014) Immobilization of inorganic ion-exchanger into biopolymer foams—application to cesium sorption. Chem Eng J 236:202–211

    Article  Google Scholar 

  32. Terreux R, Domard M, Viton C, Domard A (2006) Interactions study between the copper II ion and constitutive elements of chitosan structure by DFT calculation. Biomacromolecules 7:31–37

    Article  Google Scholar 

  33. Webster A, Halling MD, Grant DM (2007) Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohydr Res 342:1189–1201

    Article  Google Scholar 

  34. Rhazi M, Desbrieres J, Tolaimate A, Rinaudo M, Vottero P, Alagui A, El Meray M (2002) Influence of the nature of the metal ions on the complexation with chitosan. Application to the treatment of liquid waste. Eur Polym J 38:1523–1530

  35. Pearson RG (1966) Acids and bases. Science 151:172–177

    Article  Google Scholar 

  36. Miretzky P, Fernandez Cirelli A (2009) Hg(II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167:10–23

    Article  Google Scholar 

  37. Dzul Erosa MS, Saucedo Medina TI, Navarro Mendoza R, Avila Rodriguez M, Guibal E (2001) Cadmium sorption on chitosan sorbents: kinetic and equilibrium studies. Hydrometallurgy 61:157–167

    Article  Google Scholar 

  38. Piron E, Domard A (1998) Formation of a ternary complex between chitosan and ion pairs of strontium carbonate. Int J Biol Macromol 23:113–120

    Article  Google Scholar 

  39. Jaworska M, Kula K, Chassary P, Guibal E (2003) Influence of chitosan characteristics on polymer properties: II. Platinum sorption properties. Polym Int 52:206–212

    Article  Google Scholar 

  40. Quignard F, Di Renzo F, Guibal E (2010) From natural polysaccharides to materials for catalysis, adsorption, and remediation. In: Rauter AP, Vogel P, Queneau Y (eds) Carbohydrates in sustainable development I: renewable resources for chemistry and biotechnology. Topics in current chemistry, vol 294. Springer, Berlin, Heidelberg, pp 165–197

  41. Wu FC, Tseng RL, Juang RS (1999) Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan. Ind Eng Chem Res 38:270–275

    Article  Google Scholar 

  42. Guzman J, Saucedo I, Revilla J, Navarro R, Guibal E (2003) Copper sorption by chitosan in the presence of citrate ions: influence of metal speciation on sorption mechanism and uptake capacities. Int J Biol Macromol 33:57–65

    Article  Google Scholar 

  43. Padala AN, Bhaskarapillai A, Velmurugan S, Narasimhan SV (2011) Sorption behaviour of Co(II) and Cu(II) on chitosan in presence of nitrilotriacetic acid. J Hazard Mater 191:110–117

    Article  Google Scholar 

  44. Dambies L, Vincent T, Guibal E (2002) Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances. Water Res 36:3699–3710

    Article  Google Scholar 

  45. Shinde RN, Pandey AK, Acharya R, Guin R, Das SK, Rajurkar NS, Pujari PK (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47:3497–3506

  46. de Godoi FC, Rodriguez-Castellon E, Guibal E, Beppu MM (2013) An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J 234:423–429

    Article  Google Scholar 

  47. Yoshizuka K, Lou ZR, Inoue K (2000) Silver-complexed chitosan microparticles for pesticide removal. React Funct Polym 44:47–54

    Article  Google Scholar 

  48. Wu J, Luan M, Zhao J (2006) Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. Int J Biol Macromol 39:185–191

    Article  Google Scholar 

  49. Ahmed SR, Kelly AB, Barbari TA (2006) Controlling the orientation of immobilized proteins on an affinity membrane through chelation of a histidine tag to a chitosan-Ni++ surface. J Membr Sci 280:553–559

    Article  Google Scholar 

  50. Sun J, Rao S, Su Y, Xu R, Yang Y (2011) Magnetic carboxymethyl chitosan nanoparticles with immobilized metal ions for lysozyme adsorption. Colloids Surf A 389:97–103

    Article  Google Scholar 

  51. Macquarrie DJ, Hardy JJE (2005) Applications of functionalized chitosan in catalysis. Ind Eng Chem Res 44:8499–8520

    Article  Google Scholar 

  52. Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109

    Article  Google Scholar 

  53. Adlim M, Abu Bakar M, Liew KY, Ismail J (2004) Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J Mol Catal A 212:141–149

    Article  Google Scholar 

  54. Vincent T, Guibal E (2004) Chitosan-supported palladium catalyst. 5. Nitrophenol degradation using palladium supported on hollow chitosan fibers. Environ Sci Technol 38:4233–4240

    Article  Google Scholar 

  55. Schuessler S, Blaubach N, Stolle A, Cravotto G, Ondruschka B (2012) Application of a cross-linked Pd–chitosan catalyst in liquid-phase-hydrogenation using molecular hydrogen. Appl Catal A 445:231–238

    Article  Google Scholar 

  56. Mekhaev AV, Pestov AV, Molochnikov LS, Kovaleva EG, Pervova MG, Yaltuk YG, Grigor'ev IA, Kirilyuk IA (2011) Structure and characteristics of chitosan cobalt-containing hybrid systems, the catalysts of olefine oxidation. Russ J Phys Chem A 85:1155–1161

  57. Kramareva NV, Stakheev AY, Tkachenko OP, Klementiev KV, Grunert W, Finashina ED, Kustov LM (2004) Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure. J Mol Catal A 209:97–106

  58. Leonhardt SES, Stolle A, Ondruschka B, Cravotto G, De Leo C, Jandt KD, Keller TF (2010) Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl Catal A 379:30–37

  59. Martina K, Leonhardt SES, Ondruschka B, Curini M, Binello A, Cravotto G (2011) In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst. J Mol Catal A 334:60–64

    Article  Google Scholar 

  60. Corma A, Concepcion P, Dominguez I, Fornes V, Sabater MJ (2007) Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes. J Catal 251:39–47

    Article  Google Scholar 

  61. Vincent T, Guibal E (2002) Chitosan-supported palladium catalyst. 1. Synthesis procedure. Ind Eng Chem Res 41:5158–5164

    Article  Google Scholar 

  62. Guibal E, Vincent T, Spinelli S (2005) Environmental application of chitosan-supported catalysts: catalytic hollow fibers for the degradation of phenolic derivatives. Sep Sci Technol 40:633–657

    Article  Google Scholar 

  63. Peirano F, Vincent T, Quignard F, Robitzer M, Guibal E (2009) Palladium supported on chitosan hollow fiber for nitrotoluene hydrogenation. J Membr Sci 329:30–45

    Article  Google Scholar 

  64. Behar S, Gonzalez P, Agulhon P, Quignard F, Swierczynski D (2012) New synthesis of nanosized Cu–Mn spinels as efficient oxidation catalysts. Catal Today 189:35–41

    Article  Google Scholar 

  65. Wang XH, Du YM, Fan LH, Liu H, Hu Y (2005) Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym Bull 55:105–113

    Article  Google Scholar 

  66. Du W-L, Niu S–S, Xu Y-L, Xu Z-R, Fan C-L (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389

    Article  Google Scholar 

  67. Adewuyi S, Kareem KT, Atayese AO, Amolegbe SA, Aldnremi CA (2011) Chitosan-cobalt(II) and nickel(II) chelates as antibacterial agents. Int J Biol Macromol 48:301–303

    Article  Google Scholar 

  68. Wang X, Du YM, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 56:21–26

    Article  Google Scholar 

  69. Vimala K, Mohan YM, Sivudu KS, Varaprasad K, Ravindra S, Reddy NN, Padma Y, Sreedhar B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B 76:248–258

  70. Ben-Shalom N, Fallik E (2003) Further suppression of Botrytis cinerea disease in cucumber seedlings by chitosan–copper complex as compared with chitosan alone. Phytoparasitica 31:99–102

    Article  Google Scholar 

  71. Wu LQ, Lee K, Wang X, English DS, Losert W, Payne GF (2005) Chitosan-mediated and spatially selective electrodeposition of nanoscale particles. Langmuir 21:3641–3646

    Article  Google Scholar 

  72. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340

    Article  Google Scholar 

  73. Mathew M, Sureshkumar S, Sandhyarani N (2012) Synthesis and characterization of gold-chitosan nanocomposite and application of resultant nanocomposite in sensors. Colloids Surf B 93:143–147

    Article  Google Scholar 

  74. Liu B, Deng Y, Hu X, Gao Z, Sun C (2012) Electrochemical sensing of trichloroacetic acid based on silver nanoparticles doped chitosan hydrogel film prepared with controllable electrodeposition. Electrochim Acta 76:410–415

    Article  Google Scholar 

  75. Tian L, Feng Y, Qi Y, Wang B, Chen Y, Fu X (2012) Non-enzymatic amperometric sensor for hydrogen peroxide based on a biocomposite made from chitosan, hemoglobin, and silver nanoparticles. Microchim Acta 177:39–45

    Article  Google Scholar 

Download references

Acknowledgements

E.G. acknowledges the support of all PhD., master-level students and academic partners that collaborated with the research group over the last two decades for the development of biopolymer-based materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guibal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guibal, E., Vincent, T. & Navarro, R. Metal ion biosorption on chitosan for the synthesis of advanced materials. J Mater Sci 49, 5505–5518 (2014). https://doi.org/10.1007/s10853-014-8301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8301-5

Keywords

Navigation