Skip to main content
Erschienen in: Journal of Materials Science 19/2014

01.10.2014 | Ultrafinegrained Materials

Application of high-pressure torsion to Al-6 %Cu-0.4 %Zr alloy for ultrafine-grain refinement and superplasticity

verfasst von: Ali Alhamidi, Zenji Horita

Erschienen in: Journal of Materials Science | Ausgabe 19/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An Al-6 %Cu-0.4 %Zr alloy was processed by high-pressure torsion to produce an ultrafine-grained structure with a grain size of ~200 nm at the steady-state level where the hardness remains constant with straining. Tensile testing showed that a maximum elongation of ~530 % was attained at 673 K with an initial strain rate of 1 × 10−3 s−1. Evaluation of the strain-rate sensitivity and the activation energy for the deformation confirmed that grain boundary sliding through grain boundary diffusion is the rate-controlling process for the superplastic deformation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barnes AJ (1994) Superplastic forming of aluminum alloys. Langdon TG (ed.) Superplastic in advanced materials (ICSAM-1994). Mater Sci Forum 170–172:701–714 Barnes AJ (1994) Superplastic forming of aluminum alloys. Langdon TG (ed.) Superplastic in advanced materials (ICSAM-1994). Mater Sci Forum 170–172:701–714
2.
Zurück zum Zitat Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010CrossRef Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010CrossRef
3.
Zurück zum Zitat Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng, A 393:344–351CrossRef Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng, A 393:344–351CrossRef
4.
Zurück zum Zitat Lee S, Furukawa M, Horita Z, Langdon TG (2003) Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions. Mater Sci Eng A342:294–301 Lee S, Furukawa M, Horita Z, Langdon TG (2003) Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions. Mater Sci Eng A342:294–301
5.
Zurück zum Zitat Ota S, Akamatsu H, Neishi K, Furukawa M, Horita Z, Langdon TG (2002) Low-temperature superplasticity in aluminium alloys processed by equal-channel angular pressing. Mater Trans 43:2364–2369CrossRef Ota S, Akamatsu H, Neishi K, Furukawa M, Horita Z, Langdon TG (2002) Low-temperature superplasticity in aluminium alloys processed by equal-channel angular pressing. Mater Trans 43:2364–2369CrossRef
6.
Zurück zum Zitat Dobatkin SV, Bastarache EN, Sakai G, Fujita T, Horita Z, Langdon TG (2005) Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A408:141–146CrossRef Dobatkin SV, Bastarache EN, Sakai G, Fujita T, Horita Z, Langdon TG (2005) Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A408:141–146CrossRef
7.
Zurück zum Zitat Horita Z, Langdon TG (2008) Achieving exceptional superplasticity in a bulk aluminum alloy processed by high-pressure torsion. Scripta Mater 58:1029–1032CrossRef Horita Z, Langdon TG (2008) Achieving exceptional superplasticity in a bulk aluminum alloy processed by high-pressure torsion. Scripta Mater 58:1029–1032CrossRef
8.
Zurück zum Zitat Xu C, Dobatkin SV, Horita Z, Langdon TG (2009) Superplastic flow in a nanostructured aluminum alloy produced using high-pressure torsion. Mater Sci Eng A50:170–175CrossRef Xu C, Dobatkin SV, Horita Z, Langdon TG (2009) Superplastic flow in a nanostructured aluminum alloy produced using high-pressure torsion. Mater Sci Eng A50:170–175CrossRef
9.
Zurück zum Zitat Yang X, Miura H, Sakai T (2002) Continuous dynamic recrystallization in a superplastic 7075 aluminum alloys. Mater Trans 43:2400–2407CrossRef Yang X, Miura H, Sakai T (2002) Continuous dynamic recrystallization in a superplastic 7075 aluminum alloys. Mater Trans 43:2400–2407CrossRef
10.
Zurück zum Zitat Sherby OD, Wadsworth J (1989) Superplasticity recent-advances and future directions. Progress in Mater Sci 33:169–221CrossRef Sherby OD, Wadsworth J (1989) Superplasticity recent-advances and future directions. Progress in Mater Sci 33:169–221CrossRef
11.
Zurück zum Zitat Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796CrossRef Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796CrossRef
12.
Zurück zum Zitat Katsas S, Dashwood R, Grimes R, Jackson M, Todda G, Henein H (2007) Dynamic recrystallisation and superplasticity in pure aluminium with zirconium addition. Mater Sci Eng A444:291–297CrossRef Katsas S, Dashwood R, Grimes R, Jackson M, Todda G, Henein H (2007) Dynamic recrystallisation and superplasticity in pure aluminium with zirconium addition. Mater Sci Eng A444:291–297CrossRef
13.
Zurück zum Zitat Kaibyshev R, Kazyhanov V (1999) Texture and microstructure evolution during superplasticity of the metal matrix composite PM 2014 Al-20% Al2O3. Texture Microstruct 32:83–99CrossRef Kaibyshev R, Kazyhanov V (1999) Texture and microstructure evolution during superplasticity of the metal matrix composite PM 2014 Al-20% Al2O3. Texture Microstruct 32:83–99CrossRef
14.
Zurück zum Zitat Kovacs-Csetenyi E, Torma T, Turmezey T, Chinh NQ, Juhasz A, Kovacs I (1992) Superplasticity of AlMgSi alloys. J Mater Sci 27:6141–6145CrossRef Kovacs-Csetenyi E, Torma T, Turmezey T, Chinh NQ, Juhasz A, Kovacs I (1992) Superplasticity of AlMgSi alloys. J Mater Sci 27:6141–6145CrossRef
15.
Zurück zum Zitat Eddahbi M, McNelley TR, Ruano OA (2001) The evolution of grain boundary character during superplastic deformation of an Al-6 Pct Cu-0.4 Pct Zr Alloy. Metall Mater Trans A32A:1093–1102CrossRef Eddahbi M, McNelley TR, Ruano OA (2001) The evolution of grain boundary character during superplastic deformation of an Al-6 Pct Cu-0.4 Pct Zr Alloy. Metall Mater Trans A32A:1093–1102CrossRef
16.
Zurück zum Zitat Figueiredo RB, Kawasaki M, Xu C, Langdon TG (2008) Achieving superplastic behavior in fcc and hcp metals processed by equal-channel angular pressing. Mater Sci Eng, A 493:104–110CrossRef Figueiredo RB, Kawasaki M, Xu C, Langdon TG (2008) Achieving superplastic behavior in fcc and hcp metals processed by equal-channel angular pressing. Mater Sci Eng, A 493:104–110CrossRef
17.
Zurück zum Zitat Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Superplastic forming at high strain rates after severe plastic deformation. Acta Mater 48:3633–3640CrossRef Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Superplastic forming at high strain rates after severe plastic deformation. Acta Mater 48:3633–3640CrossRef
18.
Zurück zum Zitat Neishi K, Horita Z, Langdon TG (2003) Achieving superplasticity in ultrafine-grained copper: influence of Zn and Zr additions. Mater Sci Eng A352:129–135CrossRef Neishi K, Horita Z, Langdon TG (2003) Achieving superplasticity in ultrafine-grained copper: influence of Zn and Zr additions. Mater Sci Eng A352:129–135CrossRef
19.
Zurück zum Zitat Figueiredo RB, Langdon TG (2009) Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing. Scripta Mater 61:84–87CrossRef Figueiredo RB, Langdon TG (2009) Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing. Scripta Mater 61:84–87CrossRef
20.
Zurück zum Zitat Garcia-Infanta JM, Zhilyaev AP, Sharafutdinov A, Ruano OA, Carreno FJ (2009) An evidence of high strain rate superplasticity at intermediate homologous temperatures in an Al–Zn–Mg–Cu alloy processed by high-pressure torsion. Alloys Compd 473:163–166CrossRef Garcia-Infanta JM, Zhilyaev AP, Sharafutdinov A, Ruano OA, Carreno FJ (2009) An evidence of high strain rate superplasticity at intermediate homologous temperatures in an Al–Zn–Mg–Cu alloy processed by high-pressure torsion. Alloys Compd 473:163–166CrossRef
21.
Zurück zum Zitat Edalati K, Toh S, Watanabe M, Horita Z (2012) In situ production of bulk intermetallic-based nanocomposites and nanostructured intermetallics by high-pressure torsion. Scripta Mater 66:386–389CrossRef Edalati K, Toh S, Watanabe M, Horita Z (2012) In situ production of bulk intermetallic-based nanocomposites and nanostructured intermetallics by high-pressure torsion. Scripta Mater 66:386–389CrossRef
22.
Zurück zum Zitat Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Progress in Mater Sci 53:893–979CrossRef Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Progress in Mater Sci 53:893–979CrossRef
23.
Zurück zum Zitat Rentenberger C, Waitz T, Karnthaler HP (2004) HRTEM analysis of nanostructured alloys processed by severe plastic deformation. Scripta Mater 51:789–794CrossRef Rentenberger C, Waitz T, Karnthaler HP (2004) HRTEM analysis of nanostructured alloys processed by severe plastic deformation. Scripta Mater 51:789–794CrossRef
24.
Zurück zum Zitat Edalati K, Horita Z (2010) Application of high-pressure torsion for consolidation of ceramic powders. Scripta Mater 63:174–177CrossRef Edalati K, Horita Z (2010) Application of high-pressure torsion for consolidation of ceramic powders. Scripta Mater 63:174–177CrossRef
25.
Zurück zum Zitat Edalati K, Toh S, Ikoma Y, Horita Z (2011) Plastic deformation and allotropic phase transformations in zirconia ceramics during high-pressure torsion. Scripta Mater 65:974–977CrossRef Edalati K, Toh S, Ikoma Y, Horita Z (2011) Plastic deformation and allotropic phase transformations in zirconia ceramics during high-pressure torsion. Scripta Mater 65:974–977CrossRef
26.
Zurück zum Zitat Hasegawa H, Komura S, Utsunomiya A, Horita Z, Furukawa M, Nemoto M, Langdon TG (1999) Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions. Mater Sci Eng A265:188–196CrossRef Hasegawa H, Komura S, Utsunomiya A, Horita Z, Furukawa M, Nemoto M, Langdon TG (1999) Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions. Mater Sci Eng A265:188–196CrossRef
27.
Zurück zum Zitat Wadsworth J, Henshall CA, Pelton AR, Ward B Mater (1985) Superplastic properties of an AI–Cu–Li–Zr alloy. J Sci Lett 4:674–678CrossRef Wadsworth J, Henshall CA, Pelton AR, Ward B Mater (1985) Superplastic properties of an AI–Cu–Li–Zr alloy. J Sci Lett 4:674–678CrossRef
28.
Zurück zum Zitat Malek P, Turba K, Cieslar M, Drbohlav I, Kruml T (2007) Structure development during superplastic deformation of an Al–Mg–Sc–Zr alloy. Mater Sci Eng, A 462:95–99CrossRef Malek P, Turba K, Cieslar M, Drbohlav I, Kruml T (2007) Structure development during superplastic deformation of an Al–Mg–Sc–Zr alloy. Mater Sci Eng, A 462:95–99CrossRef
29.
Zurück zum Zitat Furukawa M, Berbon PB, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1998) Age hardening and the potential for superplasticity in a fine-grained Al–Mg–Li–Zr Alloy. Metall Mater Trans A 29A:169–177CrossRef Furukawa M, Berbon PB, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1998) Age hardening and the potential for superplasticity in a fine-grained Al–Mg–Li–Zr Alloy. Metall Mater Trans A 29A:169–177CrossRef
30.
Zurück zum Zitat Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng, A 137:35–40CrossRef Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng, A 137:35–40CrossRef
31.
Zurück zum Zitat Padmanabhan KA, Hirsch J, Lucke K (1991) Superplasticity-dislocation creep interactions in a coarse grained Al–Cu–Zr alloy. J Mater Sci 26:5309–5317CrossRef Padmanabhan KA, Hirsch J, Lucke K (1991) Superplasticity-dislocation creep interactions in a coarse grained Al–Cu–Zr alloy. J Mater Sci 26:5309–5317CrossRef
32.
Zurück zum Zitat Malek P, Cieslar M, Jezek J (1999) Superplasticity in a powder metallurgy Al–Cu–Zr Alloy. Phys Stat Sol 175:467–480CrossRef Malek P, Cieslar M, Jezek J (1999) Superplasticity in a powder metallurgy Al–Cu–Zr Alloy. Phys Stat Sol 175:467–480CrossRef
33.
Zurück zum Zitat Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, UK Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, UK
34.
Zurück zum Zitat Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Observation of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scripta Mater 37:1945–1950CrossRef Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Observation of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scripta Mater 37:1945–1950CrossRef
35.
Zurück zum Zitat Xu C, Horita Z, Langdon TG (2007) The evolution of homogeneity in processing by high-pressure torsion. Acta Mater 55:203–212CrossRef Xu C, Horita Z, Langdon TG (2007) The evolution of homogeneity in processing by high-pressure torsion. Acta Mater 55:203–212CrossRef
36.
Zurück zum Zitat Edalati K, Fujioka T, Horita Z (2008) Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater Sci Eng, A 497:168–173CrossRef Edalati K, Fujioka T, Horita Z (2008) Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater Sci Eng, A 497:168–173CrossRef
37.
Zurück zum Zitat Higashi K (1998) Advances and applications in high strain rate superplasticity. Met Mater Int 4:498–502 Higashi K (1998) Advances and applications in high strain rate superplasticity. Met Mater Int 4:498–502
38.
Zurück zum Zitat Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metal Mater 42:2437–2443CrossRef Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metal Mater 42:2437–2443CrossRef
39.
Zurück zum Zitat Mohamed FA (2011) Micrograin superplasticity: characteristics and utilization. Mater 4:1194–1223 Mohamed FA (2011) Micrograin superplasticity: characteristics and utilization. Mater 4:1194–1223
40.
Zurück zum Zitat Juhasz A, Chinh NQ, Tasnadi P, Kovacs I, Turmezey T (1987) Superplasticity of aluminium alloys grain-refined by zirconium. J Mater Sci 22:137–143CrossRef Juhasz A, Chinh NQ, Tasnadi P, Kovacs I, Turmezey T (1987) Superplasticity of aluminium alloys grain-refined by zirconium. J Mater Sci 22:137–143CrossRef
41.
Zurück zum Zitat Mehrer H (1990) Numerical data and functional relationship in science and technology, diffusion in solid metals and alloys, vol. 26. Springer, BerlinCrossRef Mehrer H (1990) Numerical data and functional relationship in science and technology, diffusion in solid metals and alloys, vol. 26. Springer, BerlinCrossRef
42.
Zurück zum Zitat Bricknell RH, Bentley AP (1979) The activation energy for superplastic flow in Al-6Cu-0.4Zr. J Mater Sci 14:2547–2554CrossRef Bricknell RH, Bentley AP (1979) The activation energy for superplastic flow in Al-6Cu-0.4Zr. J Mater Sci 14:2547–2554CrossRef
Metadaten
Titel
Application of high-pressure torsion to Al-6 %Cu-0.4 %Zr alloy for ultrafine-grain refinement and superplasticity
verfasst von
Ali Alhamidi
Zenji Horita
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8362-5

Weitere Artikel der Ausgabe 19/2014

Journal of Materials Science 19/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.