Skip to main content
Erschienen in: Journal of Materials Science 20/2014

01.10.2014

Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method

verfasst von: Yung-Chang Chang, Chien-Tang Peng, I-Ming Hung

Erschienen in: Journal of Materials Science | Ausgabe 20/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, well-crystallized phase pure LiFePO4/C (LFP/C) powders were synthesized using the hydrothermal reaction method. To improve the electronic conductivity of the LFP/C powder after ball-milling, the LFP/C powders were double-coated with carbon. Scanning electron microscopy and transmission electron microscopy were employed to observe the micromorphology of the samples and the carbon coating, which was analyzed using Raman spectroscopy. Furthermore, the electrochemical properties were evaluated using cyclic voltammetry, electrochemical impedance spectra, and the charge–discharge cycling test. The ball-mill and the process for double-coating carbon decrease the particle size and increase the conductivity of the LFP/C, thereby reducing the Li-ion diffusion length and improving the reversibility of the Li-ion intercalation/de-intercalation in the LFP/C crystallites. The capacity of the small-particle LFP/C with the double-layer carbon coating was 133 mAh/g at 0.1 °C, and remained at 83 mAh/g as the charge–discharge rate increased to 10 °C. In addition, good cycle stability was observed, with a retention rate of 98 % after 50 cycles at 1 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Effect of structure on the Fe3 +/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Effect of structure on the Fe3 +/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRef
3.
Zurück zum Zitat Gim J, Song J, Nguyen D, Hilmy AM, Kim S, Kang J, Rai AK, Mathew V, Kim J (2014) A two-step solid state synthesis of LiFePO4/C cathode with varying carbon contents for Li-ion batteries. Ceram Int 40:1561–1567CrossRef Gim J, Song J, Nguyen D, Hilmy AM, Kim S, Kang J, Rai AK, Mathew V, Kim J (2014) A two-step solid state synthesis of LiFePO4/C cathode with varying carbon contents for Li-ion batteries. Ceram Int 40:1561–1567CrossRef
4.
Zurück zum Zitat Chen ZH, Dahn JR (2002) Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J Electrochem Soc 149:A1184–A1189CrossRef Chen ZH, Dahn JR (2002) Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J Electrochem Soc 149:A1184–A1189CrossRef
5.
Zurück zum Zitat Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid-State Lett 6:A207–A209CrossRef Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid-State Lett 6:A207–A209CrossRef
6.
Zurück zum Zitat Fey GTK, Lu TL (2008) Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route. J Power Sources 178:807–814CrossRef Fey GTK, Lu TL (2008) Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route. J Power Sources 178:807–814CrossRef
7.
Zurück zum Zitat Zhang L, Xiang H, Zhu X, Yang W, Wang H (2012) Synthesis of LiFePO4/C composite as a cathode material for lithium-ion battery by a novel two-step method. J Mater Sci 47:3076–3081. doi:10.1007/s10853-011-6139-7 CrossRef Zhang L, Xiang H, Zhu X, Yang W, Wang H (2012) Synthesis of LiFePO4/C composite as a cathode material for lithium-ion battery by a novel two-step method. J Mater Sci 47:3076–3081. doi:10.​1007/​s10853-011-6139-7 CrossRef
8.
Zurück zum Zitat Yang K, Deng Z, Suo J (2012) Synthesis and characterization of LiFePO4 and LiFePO4/C cathode material from lithium carboxylic acid and Fe3+. J Power Sources 201:274–279CrossRef Yang K, Deng Z, Suo J (2012) Synthesis and characterization of LiFePO4 and LiFePO4/C cathode material from lithium carboxylic acid and Fe3+. J Power Sources 201:274–279CrossRef
9.
Zurück zum Zitat Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J Power Sources 193:841–845CrossRef Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J Power Sources 193:841–845CrossRef
10.
Zurück zum Zitat Cui Y, Zhao X, Guo R (2010) Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating. J Alloys Compd 490:236–240CrossRef Cui Y, Zhao X, Guo R (2010) Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating. J Alloys Compd 490:236–240CrossRef
11.
Zurück zum Zitat Honma T, Nagamine K, Komatsu T (2010) Fabrication of olivine-type LiMn x Fe1−x PO4 crystals via the glass–ceramic route and their lithium ion battery performance. Ceram Int 36:1137–1141CrossRef Honma T, Nagamine K, Komatsu T (2010) Fabrication of olivine-type LiMn x Fe1−x PO4 crystals via the glass–ceramic route and their lithium ion battery performance. Ceram Int 36:1137–1141CrossRef
12.
Zurück zum Zitat Lin YC, Fey GTK, Wu PJ, Chang JK, Kao HM (2013) Synthesis and electrochemical properties of xLiFePO4·(1–x)LiVPO4F composites prepared by aqueous precipitation and carbothermal reduction. J Power Sources 244:63–71CrossRef Lin YC, Fey GTK, Wu PJ, Chang JK, Kao HM (2013) Synthesis and electrochemical properties of xLiFePO4·(1–x)LiVPO4F composites prepared by aqueous precipitation and carbothermal reduction. J Power Sources 244:63–71CrossRef
13.
Zurück zum Zitat Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders the key to superior energy density. Electrochem Solid-State Lett 9:A352–A355CrossRef Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders the key to superior energy density. Electrochem Solid-State Lett 9:A352–A355CrossRef
14.
Zurück zum Zitat Wang XY, Miao C, Zhou J, Ma C, Wang HF, Sun SQ (2011) A novel synthesis of spherical LiFePO4 nanoparticles. Mater Lett 65:2096–2099CrossRef Wang XY, Miao C, Zhou J, Ma C, Wang HF, Sun SQ (2011) A novel synthesis of spherical LiFePO4 nanoparticles. Mater Lett 65:2096–2099CrossRef
15.
Zurück zum Zitat Ju S, Peng H, Li G, Chen K (2012) Synthesis and electrochemical properties of LiFePO4 single-crystalline nanoplates dominated with bc-planes. Mater Lett 74:22–25CrossRef Ju S, Peng H, Li G, Chen K (2012) Synthesis and electrochemical properties of LiFePO4 single-crystalline nanoplates dominated with bc-planes. Mater Lett 74:22–25CrossRef
16.
Zurück zum Zitat Qiu Y, Geng Y, Yu J, Zuo X (2014) High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning. J Mater Sci 49:504–509CrossRef Qiu Y, Geng Y, Yu J, Zuo X (2014) High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning. J Mater Sci 49:504–509CrossRef
18.
Zurück zum Zitat Wang Z, Su S, Yu C, Chen Y, Xia D (2008) Synthesises, characterizations and electrochemical properties of spherical-like LiFePO4 by hydrothermal method. J Power Sources 184:633–636CrossRef Wang Z, Su S, Yu C, Chen Y, Xia D (2008) Synthesises, characterizations and electrochemical properties of spherical-like LiFePO4 by hydrothermal method. J Power Sources 184:633–636CrossRef
19.
Zurück zum Zitat Liu J, Jiang R, Wang X, Huang T, Yu A (2009) The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values. J Power Sources 194:536–540CrossRef Liu J, Jiang R, Wang X, Huang T, Yu A (2009) The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values. J Power Sources 194:536–540CrossRef
21.
Zurück zum Zitat Li L, Tang X, Liu H, Qu Y, Lu Z (2010) Morphological solution for enhancement of electrochemical kinetic performance of LiFePO4. Electrochim Acta 56:995–999CrossRef Li L, Tang X, Liu H, Qu Y, Lu Z (2010) Morphological solution for enhancement of electrochemical kinetic performance of LiFePO4. Electrochim Acta 56:995–999CrossRef
22.
Zurück zum Zitat Pei B, Wang Q, Zhang W, Yang Z, Chen M (2011) Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping. Electrochim Acta 56:5667–5672CrossRef Pei B, Wang Q, Zhang W, Yang Z, Chen M (2011) Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping. Electrochim Acta 56:5667–5672CrossRef
23.
Zurück zum Zitat Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kim HG (2003) Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochem Commun 5:839–842CrossRef Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kim HG (2003) Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochem Commun 5:839–842CrossRef
24.
Zurück zum Zitat Hsieh CT, Mo CY, Chen YF, Chung YJ (2013) Chemical-wet synthesis and electrochemistry of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. Electrochim Acta 106:525–533CrossRef Hsieh CT, Mo CY, Chen YF, Chung YJ (2013) Chemical-wet synthesis and electrochemistry of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. Electrochim Acta 106:525–533CrossRef
25.
Zurück zum Zitat Kosova N, Devyatkina E (2004) On mechanochemical preparation of materials with enhanced characteristics for lithium batteries. Solid-State Ionics 172:181–184CrossRef Kosova N, Devyatkina E (2004) On mechanochemical preparation of materials with enhanced characteristics for lithium batteries. Solid-State Ionics 172:181–184CrossRef
26.
Zurück zum Zitat Ni J, Morishita M, Kawabe Y, Watada M, Takeichi N, Sakai T (2010) Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J Power Sources 195:2877–2882CrossRef Ni J, Morishita M, Kawabe Y, Watada M, Takeichi N, Sakai T (2010) Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J Power Sources 195:2877–2882CrossRef
27.
Zurück zum Zitat Xia Y, Yoshio M, Noguchi H (2006) Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochim Acta 52:240–245CrossRef Xia Y, Yoshio M, Noguchi H (2006) Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochim Acta 52:240–245CrossRef
28.
Zurück zum Zitat Fey GTK, Chen YG, Kao HM (2009) Electrochemical properties of LiFePO4 prepared via ball-milling. J Power Sources 189:169–178CrossRef Fey GTK, Chen YG, Kao HM (2009) Electrochemical properties of LiFePO4 prepared via ball-milling. J Power Sources 189:169–178CrossRef
29.
Zurück zum Zitat Nakano H, Dokko K, Koizumi S, Tannai H, Kanamura K (2008) Hydrothermal synthesis of carbon-coated LiFePO4 and its application to lithium polymer battery. J Electrochem Soc 155:A909–A914CrossRef Nakano H, Dokko K, Koizumi S, Tannai H, Kanamura K (2008) Hydrothermal synthesis of carbon-coated LiFePO4 and its application to lithium polymer battery. J Electrochem Soc 155:A909–A914CrossRef
30.
Zurück zum Zitat Zhao RR, Hung IM, Li YT, Chen HY, Lin CP (2012) Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries. J Alloy Compd 513:282–288CrossRef Zhao RR, Hung IM, Li YT, Chen HY, Lin CP (2012) Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries. J Alloy Compd 513:282–288CrossRef
31.
Zurück zum Zitat Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229CrossRef Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229CrossRef
32.
Zurück zum Zitat Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S, Jamnik J (2003) The role of carbon black distribution in cathodes for Li ion batteries. J Power Sources 119:770–773CrossRef Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S, Jamnik J (2003) The role of carbon black distribution in cathodes for Li ion batteries. J Power Sources 119:770–773CrossRef
33.
Zurück zum Zitat Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sources 163:180–184CrossRef Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sources 163:180–184CrossRef
34.
Zurück zum Zitat Takahashi M, Tobishima S, Takei K, Sakurai Y (2001) Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J Power Sources 97:508–511CrossRef Takahashi M, Tobishima S, Takei K, Sakurai Y (2001) Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J Power Sources 97:508–511CrossRef
35.
Zurück zum Zitat Lu CZ, Fey GTK, Kao HM (2009) Study of LiFePO4 cathode materials coated with high surface area carbon. J Power Sources 189:155–162CrossRef Lu CZ, Fey GTK, Kao HM (2009) Study of LiFePO4 cathode materials coated with high surface area carbon. J Power Sources 189:155–162CrossRef
36.
Zurück zum Zitat Tang K, Yu X, Sun J, Li H, Huang X (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875CrossRef Tang K, Yu X, Sun J, Li H, Huang X (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875CrossRef
37.
Zurück zum Zitat Shi Y, Wen L, Li F, Cheng HM (2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources 196:8610–8617CrossRef Shi Y, Wen L, Li F, Cheng HM (2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources 196:8610–8617CrossRef
38.
Zurück zum Zitat Park CK, Park SB, Shin HC, Cho W, Jang H (2011) Li ion diffusivity and rate performance of the LiFePO4 mModified by Cr doping. Bull Korean Chem Soc 32:191–195CrossRef Park CK, Park SB, Shin HC, Cho W, Jang H (2011) Li ion diffusivity and rate performance of the LiFePO4 mModified by Cr doping. Bull Korean Chem Soc 32:191–195CrossRef
39.
Zurück zum Zitat Wu F, Wang F, Wu C, Bai Y (2012) Rate performance of Li3V2(PO4)3/C cathode material and its Li+ ion intercalation behavior. J Alloys Compd 513:236–241CrossRef Wu F, Wang F, Wu C, Bai Y (2012) Rate performance of Li3V2(PO4)3/C cathode material and its Li+ ion intercalation behavior. J Alloys Compd 513:236–241CrossRef
40.
Zurück zum Zitat Cui Y, Zhao X, Guo R (2010) Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochim Acta 55:922–926CrossRef Cui Y, Zhao X, Guo R (2010) Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochim Acta 55:922–926CrossRef
Metadaten
Titel
Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method
verfasst von
Yung-Chang Chang
Chien-Tang Peng
I-Ming Hung
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8395-9

Weitere Artikel der Ausgabe 20/2014

Journal of Materials Science 20/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.