Skip to main content
Erschienen in: Journal of Materials Science 5/2015

01.03.2015 | Original Paper

Multiscale carbon nanosphere–carbon fiber reinforcement for cement-based composites with enhanced high-temperature resistance

verfasst von: Tao Han, Huiqi Wang, Xiuzhi Jin, Jinhua Yang, Yongsheng Lei, Fang Yang, Xueteng Yang, Zechao Tao, Quangui Guo, Lang Liu

Erschienen in: Journal of Materials Science | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel multiscale reinforcement was prepared by the fast growth of carbon nanospheres (CNSs) onto the surface of carbon fiber (CF) under mildly hydrothermal reaction. The uniform layer of CNS with an average diameter of 85 nm produced on the fiber surface. Further, the structural analysis, surface morphology, and thermal decomposition behavior of CNS–CF reinforcement were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy combined with Fourier transform infrared spectroscopy and thermogravimetric analysis, respectively. Cement-based composites based on the multiscale CNS–CF reinforcement have been fabricated to evaluate their high-temperature resistance. CNS–CF/cement composites have a better resistance to the degradation resulted from exposure to elevated temperature up to 600 °C than CF/cement composites and pristine hardened pastes, since their relative residual compressive strength is superior. The degrading mechanisms due to exposure to elevated temperatures were discussed and confirmed by using SEM and XRD. Results indicated that enhanced high-temperature resistance was attributed to the effective interlocking between CF and matrix due to (1) the presence of nanoscale CNS on the surface of CF and (2) the formation of microchannels in the matrix since CNS collapsed prior to CF after exposure to elevated temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ranade R, Zhang J, Lynch JP, Li VC (2014) Influence of micro-cracking on the composite resistivity of engineered cementitious composites. Cem Concr Res 58:1–12CrossRef Ranade R, Zhang J, Lynch JP, Li VC (2014) Influence of micro-cracking on the composite resistivity of engineered cementitious composites. Cem Concr Res 58:1–12CrossRef
2.
Zurück zum Zitat Laukaitis A, Keriene J, Kligys M, Mikulskis D, Lekunaite L (2012) Influence of mechanically treated carbon fibre additives on structure formation and properties of autoclaved aerated concrete. Constr Build Mater 26:362–371CrossRef Laukaitis A, Keriene J, Kligys M, Mikulskis D, Lekunaite L (2012) Influence of mechanically treated carbon fibre additives on structure formation and properties of autoclaved aerated concrete. Constr Build Mater 26:362–371CrossRef
3.
Zurück zum Zitat Erdem TK (2014) Specimen size effect on the residual properties of engineered cementitious composites subjected to high temperatures. Cem Concr Compos 45:1–8CrossRef Erdem TK (2014) Specimen size effect on the residual properties of engineered cementitious composites subjected to high temperatures. Cem Concr Compos 45:1–8CrossRef
4.
Zurück zum Zitat Wang S, Chung DDL (2006) Self-sensing of flexural strain and damage in carbon fiber polymer–matrix composite by electrical resistance measurement. Carbon 44:2739–2751CrossRef Wang S, Chung DDL (2006) Self-sensing of flexural strain and damage in carbon fiber polymer–matrix composite by electrical resistance measurement. Carbon 44:2739–2751CrossRef
5.
Zurück zum Zitat Farzadnia N, Abang Ali AA, Demirboga R (2013) Characterization of high strength mortars with nano alumina at elevated temperatures. Cem Concr Res 54:43–54CrossRef Farzadnia N, Abang Ali AA, Demirboga R (2013) Characterization of high strength mortars with nano alumina at elevated temperatures. Cem Concr Res 54:43–54CrossRef
6.
Zurück zum Zitat Tanigawa Y, Yamada K (1978) Size effect in compressive strength of concrete. Cem Concr Res 8:181–190CrossRef Tanigawa Y, Yamada K (1978) Size effect in compressive strength of concrete. Cem Concr Res 8:181–190CrossRef
7.
Zurück zum Zitat Chen B, Liu J (2004) Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cem Concr Res 34:1065–1069CrossRef Chen B, Liu J (2004) Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cem Concr Res 34:1065–1069CrossRef
8.
Zurück zum Zitat Çavdar A (2012) A study on the effects of high temperature on mechanical properties of fiber reinforced cementitious composites. Compos B Eng 43:2452–2463CrossRef Çavdar A (2012) A study on the effects of high temperature on mechanical properties of fiber reinforced cementitious composites. Compos B Eng 43:2452–2463CrossRef
9.
Zurück zum Zitat Düzgün OA, Gül R, Aydin AC (2005) Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete. Mater Lett 59:3357–3363CrossRef Düzgün OA, Gül R, Aydin AC (2005) Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete. Mater Lett 59:3357–3363CrossRef
10.
Zurück zum Zitat Sun Z, Xu Q (2009) Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete. Mater Sci Eng A 527:198–204CrossRef Sun Z, Xu Q (2009) Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete. Mater Sci Eng A 527:198–204CrossRef
11.
Zurück zum Zitat Kalifa P, Chéné G, Gallé C (2001) High-temperature behaviour of HPC with polypropylene fibres: from spalling to microstructure. Cem Concr Res 31:1487–1499CrossRef Kalifa P, Chéné G, Gallé C (2001) High-temperature behaviour of HPC with polypropylene fibres: from spalling to microstructure. Cem Concr Res 31:1487–1499CrossRef
12.
Zurück zum Zitat Noumowe AN, Siddique R, Debicki G (2009) Permeability of high-performance concrete subjected to elevated temperature (600°C). Constr Build Mater 23:1855–1861CrossRef Noumowe AN, Siddique R, Debicki G (2009) Permeability of high-performance concrete subjected to elevated temperature (600°C). Constr Build Mater 23:1855–1861CrossRef
13.
Zurück zum Zitat Zeiml M, Leithner D, Lackner R, Mang HA (2006) How do polypropylene fibers improve the spalling behavior of in situ concrete? Cem Concr Res 36:929–942CrossRef Zeiml M, Leithner D, Lackner R, Mang HA (2006) How do polypropylene fibers improve the spalling behavior of in situ concrete? Cem Concr Res 36:929–942CrossRef
14.
Zurück zum Zitat Chung DDL (2000) Cement reinforced with short carbon fibers: a multifunctional material. Compos B Eng 31:511–526CrossRef Chung DDL (2000) Cement reinforced with short carbon fibers: a multifunctional material. Compos B Eng 31:511–526CrossRef
15.
Zurück zum Zitat Muthusamy S, Chung DDL (2010) Carbon-fiber cement-based materials for electromagnetic shielding. ACI Mater J 107:602–610 Muthusamy S, Chung DDL (2010) Carbon-fiber cement-based materials for electromagnetic shielding. ACI Mater J 107:602–610
16.
17.
Zurück zum Zitat Wen SH, Chung DDL (2006) Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon 44:1496–1502CrossRef Wen SH, Chung DDL (2006) Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon 44:1496–1502CrossRef
18.
Zurück zum Zitat Drchalová J, Mňahončáková E, Vejmelka R, Koĺı́sko J, Bayer P, Černý R (2004) Hydric and mechanical properties of carbon fiber reinforced cement composites subjected to thermal load. Constr Build Mater 18:567–578CrossRef Drchalová J, Mňahončáková E, Vejmelka R, Koĺı́sko J, Bayer P, Černý R (2004) Hydric and mechanical properties of carbon fiber reinforced cement composites subjected to thermal load. Constr Build Mater 18:567–578CrossRef
19.
Zurück zum Zitat Qian H, Greenhalgh ES, Shaffer MSP, Bismarck A (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751–4762CrossRef Qian H, Greenhalgh ES, Shaffer MSP, Bismarck A (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751–4762CrossRef
20.
Zurück zum Zitat Hu J, Dong S, Feng Q, Zhou M, Wang X, Cheng Y (2014) Tailoring carbon nanotube/matrix interface to optimize mechanical properties of multiscale composites. Carbon 69:621–625CrossRef Hu J, Dong S, Feng Q, Zhou M, Wang X, Cheng Y (2014) Tailoring carbon nanotube/matrix interface to optimize mechanical properties of multiscale composites. Carbon 69:621–625CrossRef
21.
Zurück zum Zitat Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2011) Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics. Carbon 49:937–948CrossRef Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2011) Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics. Carbon 49:937–948CrossRef
22.
Zurück zum Zitat Jia X, Li G, Liu B, Luo Y, Yang G, Yang X (2013) Multiscale reinforcement and interfacial strengthening on epoxy-based composites by silica nanoparticle-multiwalled carbon nanotube complex. Compos Part A 48:101–109CrossRef Jia X, Li G, Liu B, Luo Y, Yang G, Yang X (2013) Multiscale reinforcement and interfacial strengthening on epoxy-based composites by silica nanoparticle-multiwalled carbon nanotube complex. Compos Part A 48:101–109CrossRef
23.
Zurück zum Zitat Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91:6034–6037CrossRef Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91:6034–6037CrossRef
24.
Zurück zum Zitat Zhao F, Huang Y, Liu L, Bai Y, Xu L (2011) Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 49:2624–2632CrossRef Zhao F, Huang Y, Liu L, Bai Y, Xu L (2011) Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 49:2624–2632CrossRef
25.
Zurück zum Zitat Ryu J, Suh YW, Suh DJ, Ahn DJ (2010) Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 48:1990–1998CrossRef Ryu J, Suh YW, Suh DJ, Ahn DJ (2010) Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 48:1990–1998CrossRef
26.
Zurück zum Zitat Wang HQ, Guo QG, Yang JH et al (2013) Microstructural evolution and oxidation resistance of polyacrylonitrile-based carbon fibers doped with boron by the decomposition of B4C. Carbon 56:296–308CrossRef Wang HQ, Guo QG, Yang JH et al (2013) Microstructural evolution and oxidation resistance of polyacrylonitrile-based carbon fibers doped with boron by the decomposition of B4C. Carbon 56:296–308CrossRef
27.
Zurück zum Zitat Wang B, Guo Z, Han Y, Zhang T (2013) Electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites. Constr Build Mater 46:98–103CrossRef Wang B, Guo Z, Han Y, Zhang T (2013) Electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites. Constr Build Mater 46:98–103CrossRef
28.
Zurück zum Zitat Bekyarova E, Thostenson ET, Yu A et al (2007) Multiscale carbon nanotube–carbon fiber reinforcement for advanced epoxy composites. Langmuir 23:3970–3974CrossRef Bekyarova E, Thostenson ET, Yu A et al (2007) Multiscale carbon nanotube–carbon fiber reinforcement for advanced epoxy composites. Langmuir 23:3970–3974CrossRef
29.
Zurück zum Zitat Yang ZC, Zhang Y, Kong JH, Wong SY, Li X, Wang J (2013) Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of alpha-cyclodextrin templated by F127 block copolymers. Chem Mater 25:704–710CrossRef Yang ZC, Zhang Y, Kong JH, Wong SY, Li X, Wang J (2013) Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of alpha-cyclodextrin templated by F127 block copolymers. Chem Mater 25:704–710CrossRef
30.
Zurück zum Zitat Yang Z-C, Li X, Wang J (2011) Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon 49:5207–5212CrossRef Yang Z-C, Li X, Wang J (2011) Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon 49:5207–5212CrossRef
31.
Zurück zum Zitat Ray SC, Tetana ZN, Erasmus R, Mathur A, Coville NJ (2014) Carbon spheres for energy applications: Raman and X-ray photoemission spectroscopy studies. Int J Energy Res 38:444–451CrossRef Ray SC, Tetana ZN, Erasmus R, Mathur A, Coville NJ (2014) Carbon spheres for energy applications: Raman and X-ray photoemission spectroscopy studies. Int J Energy Res 38:444–451CrossRef
32.
Zurück zum Zitat Mérel P, Tabbal M, Chaker M, Moisa S, Margot J (1998) Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl Surf Sci 136:105–110CrossRef Mérel P, Tabbal M, Chaker M, Moisa S, Margot J (1998) Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl Surf Sci 136:105–110CrossRef
33.
Zurück zum Zitat László K, Tombácz E, Josepovits K (2001) Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39:1217–1228CrossRef László K, Tombácz E, Josepovits K (2001) Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39:1217–1228CrossRef
34.
Zurück zum Zitat Dhakate SR, Bahl OP (2003) Effect of carbon fiber surface functional groups on the mechanical properties of carbon–carbon composites with HTT. Carbon 41:1193–1203CrossRef Dhakate SR, Bahl OP (2003) Effect of carbon fiber surface functional groups on the mechanical properties of carbon–carbon composites with HTT. Carbon 41:1193–1203CrossRef
35.
Zurück zum Zitat Fu X, Lu W, Chung DDL (1998) Ozone treatment of carbon fiber for reinforcing cement. Carbon 36:1337–1345CrossRef Fu X, Lu W, Chung DDL (1998) Ozone treatment of carbon fiber for reinforcing cement. Carbon 36:1337–1345CrossRef
36.
Zurück zum Zitat Wang CA, Li KZ, Li HJ, Jiao GS, Lu JH, Hou DS (2008) Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites. Mater Sci Eng A 487:52–57CrossRef Wang CA, Li KZ, Li HJ, Jiao GS, Lu JH, Hou DS (2008) Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites. Mater Sci Eng A 487:52–57CrossRef
37.
Zurück zum Zitat Zhao Y, Liu Z, Wang H et al (2013) Microstructure and thermal/mechanical properties of short carbon fiber-reinforced natural graphite flake composites with mesophase pitch as the binder. Carbon 53:313–320CrossRef Zhao Y, Liu Z, Wang H et al (2013) Microstructure and thermal/mechanical properties of short carbon fiber-reinforced natural graphite flake composites with mesophase pitch as the binder. Carbon 53:313–320CrossRef
38.
Zurück zum Zitat Silva FDA, Butler M, Hempel S, Toledo Filho RD, Mechtcherine V (2014) Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete. Cem Concr Compos 48:26–34CrossRef Silva FDA, Butler M, Hempel S, Toledo Filho RD, Mechtcherine V (2014) Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete. Cem Concr Compos 48:26–34CrossRef
39.
Zurück zum Zitat Rashad AM, Bai Y, Basheer PAM, Collier NC, Milestone NB (2012) Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res 42:333–343CrossRef Rashad AM, Bai Y, Basheer PAM, Collier NC, Milestone NB (2012) Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res 42:333–343CrossRef
40.
Zurück zum Zitat Donatello S, Kuenzel C, Palomo A, Fernández-Jiménez A (2014) High temperature resistance of a very high volume fly ash cement paste. Cem Concr Compos 45:234–242CrossRef Donatello S, Kuenzel C, Palomo A, Fernández-Jiménez A (2014) High temperature resistance of a very high volume fly ash cement paste. Cem Concr Compos 45:234–242CrossRef
41.
Zurück zum Zitat KM Anwar Hossain (2006) High strength blended cement concrete incorporating volcanic ash: performance at high temperatures. Cem Concr Compos 28:535–545CrossRef KM Anwar Hossain (2006) High strength blended cement concrete incorporating volcanic ash: performance at high temperatures. Cem Concr Compos 28:535–545CrossRef
42.
Zurück zum Zitat Peng GF, Huang ZS (2008) Change in microstructure of hardened cement paste subjected to elevated temperatures. Constr Build Mater 22:593–599CrossRef Peng GF, Huang ZS (2008) Change in microstructure of hardened cement paste subjected to elevated temperatures. Constr Build Mater 22:593–599CrossRef
43.
Zurück zum Zitat Chan YN, Luo X, Sun W (2000) Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800°C. Cem Concr Res 30:247–251CrossRef Chan YN, Luo X, Sun W (2000) Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800°C. Cem Concr Res 30:247–251CrossRef
Metadaten
Titel
Multiscale carbon nanosphere–carbon fiber reinforcement for cement-based composites with enhanced high-temperature resistance
verfasst von
Tao Han
Huiqi Wang
Xiuzhi Jin
Jinhua Yang
Yongsheng Lei
Fang Yang
Xueteng Yang
Zechao Tao
Quangui Guo
Lang Liu
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8655-8

Weitere Artikel der Ausgabe 5/2015

Journal of Materials Science 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.