Skip to main content
Erschienen in: Journal of Materials Science 4/2015

01.02.2015 | Original Paper

The effect of reduction methods and stabilizer (PVP) on the properties of polyacrylonitrile (PAN) composite nanofibers in the presence of nanosilver

verfasst von: Nuray Ucar, Nesrin Demirsoy, Aysen Onen, Ismail Karacan, Nuray Kizildag, Olcay Eren, O. Faruk Vurur, Esma Sezer, Belkis Ustamehmetoglu

Erschienen in: Journal of Materials Science | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are many studies which use different types of reduction methods that affect the final properties of composite material containing silver nitrate (AgNO3). The use of poly(N-vinylpyrrolidone) (PVP) in the composite also affects the final properties of composite material. However, as seen from the literature, it is difficult to find any studies focusing on polymer composite nanofibers reduced using different reduction methods and studies with different PVP loadings which are compared to each other, although it is very important to determine the most suitable reduction method and PVP loading for final composite properties. Thus, in this work, the effect of different reduction methods on polyacrylonitrile (PAN) composite nanofibers incorporating AgNO3 and the comparison of different amounts of stabilizer (PVP) are studied in detail to determine the most suitable reduction method and the effect of PVP loading on the structure and the properties of the final product. PAN composite nanofibers having different amounts of PVP are reduced by four different methods namely arc-sol method, hydrazine method, arc-web method, and reflux method and characterized by electrical conductivity, mechanical testing, and thermal and SEM analyses. It has been observed that the hydrazine method provides higher breaking strength, electrical conductivity, enthalpy, smallest diameter, and lower cyclization temperature (T c) than other reduction methods. Presence of PVP results in an increase of breaking strength and cyclization temperature, a decrease of enthalpy and the electrical conductivity. While highest breaking strength was obtained by hydrazine reduction with highest PVP loading, highest electrical conductivity was obtained by hydrazine reduction without PVP. As a direct result of the incorporation of AgNO3 with or without PVP, insulator pure PAN (10−12 S/cm) becomes semi-conductive material (10−7 S/cm), which can be used as an antistatic material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sichani GN, Morshed M, Amirnasr M, Abedi D (2010) In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles. J Appl Polym Sci 116:1021–1029 Sichani GN, Morshed M, Amirnasr M, Abedi D (2010) In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles. J Appl Polym Sci 116:1021–1029
2.
Zurück zum Zitat Malina D, Sobczak-Kupıec A, Wzorek Z, Kowalski Z (2012) Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig J Nanomater Biostructures 7(4):1527–1534 Malina D, Sobczak-Kupıec A, Wzorek Z, Kowalski Z (2012) Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig J Nanomater Biostructures 7(4):1527–1534
3.
Zurück zum Zitat Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M (2011) Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur Polym J 47:1402–1409CrossRef Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M (2011) Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur Polym J 47:1402–1409CrossRef
4.
Zurück zum Zitat Rujitanaroj P, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–4732CrossRef Rujitanaroj P, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–4732CrossRef
5.
Zurück zum Zitat Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8CrossRef Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8CrossRef
6.
Zurück zum Zitat Zhang L, Luo J, Menkhaus TJ, Varadaraju H, Sun Y, Fong H (2011) Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers. J Membr Sci 369:499–505CrossRef Zhang L, Luo J, Menkhaus TJ, Varadaraju H, Sun Y, Fong H (2011) Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers. J Membr Sci 369:499–505CrossRef
7.
Zurück zum Zitat Chaudhary A, Gupta A, Mathur RB, Dhakate SR (2014) Effective antimicrobial filter from electrospun polyacrylonitrile-silver composite nanofibers membrane for conducive environment. Adv Mater Lett 5(10):562–568 Chaudhary A, Gupta A, Mathur RB, Dhakate SR (2014) Effective antimicrobial filter from electrospun polyacrylonitrile-silver composite nanofibers membrane for conducive environment. Adv Mater Lett 5(10):562–568
8.
Zurück zum Zitat Bai J, Yan Q, Wang S, Li Y (2011) Preparation and characterization of electrospun Ag/polyacrylonitrile composite nanofibers. Korean J Chem Eng 28(8):1761–1763CrossRef Bai J, Yan Q, Wang S, Li Y (2011) Preparation and characterization of electrospun Ag/polyacrylonitrile composite nanofibers. Korean J Chem Eng 28(8):1761–1763CrossRef
9.
Zurück zum Zitat Mahapatra A, Garg N, Nayak BP, Mishra BG, Hota G (2012) Studies on the synthesis of electrospun PAN–Ag composite nanofibers for antibacterial application. J Appl Polym Sci 124:1178–1185CrossRef Mahapatra A, Garg N, Nayak BP, Mishra BG, Hota G (2012) Studies on the synthesis of electrospun PAN–Ag composite nanofibers for antibacterial application. J Appl Polym Sci 124:1178–1185CrossRef
10.
Zurück zum Zitat Abdo HS, Khalil KA, Al-Deyab SS, Altaleb H, Sherif ESM (2013) Antibacterial effect of carbon nanofibers containing Ag nanoparticles. Fiber Polym 14(12):1985–1992CrossRef Abdo HS, Khalil KA, Al-Deyab SS, Altaleb H, Sherif ESM (2013) Antibacterial effect of carbon nanofibers containing Ag nanoparticles. Fiber Polym 14(12):1985–1992CrossRef
11.
Zurück zum Zitat Lee HK, Jeong EH, Baek CK, Youk JH (2005) One-step preparation of ultrafine poly(acrylonitrile) fibers containing silver nanoparticles. Mater Lett 59:2977–2980CrossRef Lee HK, Jeong EH, Baek CK, Youk JH (2005) One-step preparation of ultrafine poly(acrylonitrile) fibers containing silver nanoparticles. Mater Lett 59:2977–2980CrossRef
12.
Zurück zum Zitat Tyurin A, Filpo GD, Cupelli D, Nicoletta FP, Mashin A, Chidichimo G (2010) Particle size tuning in silver-polyacrylonitrile nanocomposites. Express Polym Lett 4(2):71–78CrossRef Tyurin A, Filpo GD, Cupelli D, Nicoletta FP, Mashin A, Chidichimo G (2010) Particle size tuning in silver-polyacrylonitrile nanocomposites. Express Polym Lett 4(2):71–78CrossRef
13.
Zurück zum Zitat Rujitanaroj P, Pimpha N, Supaphol P (2010) Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. J Appl Polym Sci 116:1967–1976 Rujitanaroj P, Pimpha N, Supaphol P (2010) Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. J Appl Polym Sci 116:1967–1976
14.
Zurück zum Zitat Mbhele ZH, Salemane MH, Van Sittert CGCE, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024CrossRef Mbhele ZH, Salemane MH, Van Sittert CGCE, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024CrossRef
15.
Zurück zum Zitat Reichmanis E, Frank CW, O’Donnell JH, Hill DJT (1993) Radiation effects on polymeric materials, a brief overview. Irradiation of polymeric materials. American Chemical Society, ACS Symposium Series, Washington, DC, pp 1–8 Reichmanis E, Frank CW, O’Donnell JH, Hill DJT (1993) Radiation effects on polymeric materials, a brief overview. Irradiation of polymeric materials. American Chemical Society, ACS Symposium Series, Washington, DC, pp 1–8
16.
Zurück zum Zitat Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari MS, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly(N-vinyl pyrrolidone). Eur Polym J 42:2672–2677CrossRef Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari MS, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly(N-vinyl pyrrolidone). Eur Polym J 42:2672–2677CrossRef
17.
Zurück zum Zitat Jin WJ, Lee HK, Jeong EH, Park WH, Youk JH (2005) Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone). Macromol Rapid Commun 26:1903–1907CrossRef Jin WJ, Lee HK, Jeong EH, Park WH, Youk JH (2005) Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone). Macromol Rapid Commun 26:1903–1907CrossRef
18.
Zurück zum Zitat Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94:449–453CrossRef Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94:449–453CrossRef
19.
Zurück zum Zitat ASTM D257-7 (2013) Standard test methods for DC resistance or conductance of insulating materials ASTM D257-7 (2013) Standard test methods for DC resistance or conductance of insulating materials
20.
Zurück zum Zitat ASTM D4496-13 (2013) Standard test method for D-C resistance or conductance of moderately conductive materials ASTM D4496-13 (2013) Standard test method for D-C resistance or conductance of moderately conductive materials
21.
Zurück zum Zitat Almuhamed S, Khenoussi N, Schacher L, Adolphe D, Balard H (2012) Measuring of electrical properties of MWNT-reinforced PAN nanocomposites. J Nanomater. doi:10.1155/2012/750698 Almuhamed S, Khenoussi N, Schacher L, Adolphe D, Balard H (2012) Measuring of electrical properties of MWNT-reinforced PAN nanocomposites. J Nanomater. doi:10.​1155/​2012/​750698
22.
Zurück zum Zitat Wang Y, Yang Q, Shan G, Wang C, Du J, Wang S, Li Y, Chen X, Jing X, Wei Y (2005) Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater Lett 59:3046–3049CrossRef Wang Y, Yang Q, Shan G, Wang C, Du J, Wang S, Li Y, Chen X, Jing X, Wei Y (2005) Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater Lett 59:3046–3049CrossRef
23.
Zurück zum Zitat Shoushtari AM, Zargaran M, Abdous M (2006) Preparation and characterization of high efficiency ion-exchanged crosslinked acrylic fibers. J Appl Polym Sci 101:2202–2209CrossRef Shoushtari AM, Zargaran M, Abdous M (2006) Preparation and characterization of high efficiency ion-exchanged crosslinked acrylic fibers. J Appl Polym Sci 101:2202–2209CrossRef
24.
Zurück zum Zitat Anthony LA (2008) Science and technology of polymer nanofibers, 1st edn. John Wiley & Sons Inc., Hoboken Anthony LA (2008) Science and technology of polymer nanofibers, 1st edn. John Wiley & Sons Inc., Hoboken
25.
Zurück zum Zitat Kim JS (2007) Reduction of silver nitrate in ethanol by poly(N-vinylpyrrolidone). J Ind Eng Chem 13(4):566–570 Kim JS (2007) Reduction of silver nitrate in ethanol by poly(N-vinylpyrrolidone). J Ind Eng Chem 13(4):566–570
26.
Metadaten
Titel
The effect of reduction methods and stabilizer (PVP) on the properties of polyacrylonitrile (PAN) composite nanofibers in the presence of nanosilver
verfasst von
Nuray Ucar
Nesrin Demirsoy
Aysen Onen
Ismail Karacan
Nuray Kizildag
Olcay Eren
O. Faruk Vurur
Esma Sezer
Belkis Ustamehmetoglu
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8748-4

Weitere Artikel der Ausgabe 4/2015

Journal of Materials Science 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.