Skip to main content

Advertisement

Log in

Well-dispersed PEDOT:PSS/graphene nanocomposites synthesized by in situ polymerization as counter electrodes for dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Preparation of graphene composite material suitable for drop-coating on FTO conductive glasses in ambient conditions is reported. Highly dispersed PEDOT:PSS/graphene composites were synthesized by in situ polymerization of 3,4-ethylenedioxythiophene (EDOT) using aqueous graphene dispersions as a precursor without the need for further reducing steps. The structural properties of the PEDOT:PSS/graphene were investigated by transmission electron microscope and FT-IR spectrometry. Graphene sheets as the support material likely provided increased active sites for the polymerization of EDOT. The graphene sheets were homogeneously coated by PEDOT:PSS. Drop-coating the solution of PEDOT:PSS/graphene nanocomposites onto FTO glass yielded graphene composite counter electrodes (CEs) useful for dye-sensitized solar cells (DSSCs). Both in cyclic voltammetry measurements and electrochemical impedance spectroscopy, the composite CEs exhibited good catalytic activity. The DSSCs based on PEDOT:PSS/graphene CEs showed a conversion efficiency of 4.66 %, comparable to platinum CE-based cells which showed a conversion efficiency of 5.94 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dodoo-Arhin D, Fabiane M, Bello A, Manyala N (2013) Graphene: synthesis, transfer, and characterization for dye-sensitized solar cells applications. Ind Eng Chem Res 52(39):14160–14168. doi:10.1021/ie4017489

    Article  Google Scholar 

  2. Tang Q, Cai H, Yuan S, Wang X (2013) Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J Mater Chem A 1(2):317–323. doi:10.1039/C2TA00026A

    Article  Google Scholar 

  3. Zhang DW, Li XD, Li HB, Chen S, Sun Z, Yin XJ, Huang SM (2011) Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15):5382–5388. doi:10.1016/j.carbon.2011.08.005

    Article  Google Scholar 

  4. Tan Z, Zhao B, Shen P, Jiang S, Jiang P, Wang X, Tan S (2011) Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. J Mater Sci 46(23):7482–7488. doi:10.1007/s10853-011-5718-y

    Article  Google Scholar 

  5. Li Z, Ye B, Hu X, Ma X, Zhang X, Deng Y (2009) Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell. Electrochem Commun 11(9):1768–1771. doi:10.1016/j.elecom.2009.07.018

    Article  Google Scholar 

  6. Lee TH, Do K, Lee YW, Jeon SS, Kim C, Ko J, Im SS (2012) High-performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode. J Mater Chem 22(40):21624–21629. doi:10.1039/C2JM34807A

    Article  Google Scholar 

  7. Chu C, Tsai J, Sun C (2012) Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications. Int J Hydrog Energy 37(18):13880–13886. doi:10.1016/j.ijhydene.2012.05.017

    Article  Google Scholar 

  8. Tung TT, Kim TY, Shim JP, Yang WS, Kim H, Suh KS (2011) Poly(ionic liquid)-stabilized graphene sheets and their hybrid with poly(3,4-ethylenedioxythiophene). Org Electron 12(12):2215–2224. doi:10.1016/j.orgel.2011.09.012

    Article  Google Scholar 

  9. Karuwan C, Sriprachuabwong C, Wisitsoraat A, Phokharatkul D, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol. Sens Actuators B 161(1):549–555. doi:10.1016/j.snb.2011.10.074

    Article  Google Scholar 

  10. Khatri I, Imamura T, Uehara A, Ishikawa R, Ueno K, Shirai H (2012) Chemical mist deposition of graphene oxide and PEDOT:PSS films for crystalline Si/organic heterojunction solar cells. Physica Status Solidi (c) 9(10–11):2134–2137. doi:10.1002/pssc.201200132

    Article  Google Scholar 

  11. Peng Y, Zhong J, Wang K, Xue B, Cheng Y (2013) A printable graphene enhanced composite counter electrode for flexible dye-sensitized solar cells. Nano Energy 2(2):235–240. doi:10.1016/j.nanoen.2012.08.010

    Article  Google Scholar 

  12. Lu L, Zhang O, Xu J, Wen Y, Duan X, Yu H, Wu L, Nie T (2013) A facile one-step redox route for the synthesis of graphene/poly (3,4-ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sens Actuat B 181:567–574. doi:10.1016/j.snb.2013.02.024

    Article  Google Scholar 

  13. Li Y, Pan Z, Fu Y, Chen Y, Xie Z, Zhang B (2012) Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells. J Polym Sci Part A 50(9):1663–1671. doi:10.1002/pola.25948

    Article  Google Scholar 

  14. Jo K, Lee T, Choi HJ, Park JH, Lee DJ, Lee DW, Kim B (2011) Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes. Langmuir 27(5):2014–2018. doi:10.1021/la104420p

    Article  Google Scholar 

  15. Trang LKH, Thanh Tung T, Young Kim T, Yang WS, Kim H, Suh KS (2012) Preparation and characterization of graphene composites with conducting polymers. Polym Int 61(1):93–98. doi:10.1002/pi.3152

    Article  Google Scholar 

  16. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10(10):1555–1558. doi:10.1016/j.elecom.2008.08.007

    Article  Google Scholar 

  17. Yoo D, Kim J, Kim JH (2014) Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. doi:10.1007/s12274-014-0433-z

    Google Scholar 

  18. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105. doi:10.1038/nnano.2007.451

    Article  Google Scholar 

  19. Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Péchy P, Grätzel M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovolt Res Appl 15(7):603–612. doi:10.1002/pip.768

    Article  Google Scholar 

  20. Wan L, Wang S, Wang X, Dong B, Xu Z, Zhang X, Yang B, Peng S, Wang J, Xu C (2011) Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells. Solid State Sci 13(2):468–475. doi:10.1016/j.solidstatesciences.2010.12.014

    Article  Google Scholar 

  21. Staudenmaier L (1899) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 32(2):1394–1399. doi:10.1002/cber.18990320208

    Article  Google Scholar 

  22. Wang J, Wang X, Wan L, Yang Y, Wang S (2010) An effective method for bulk obtaining graphene oxide solids. Chin J Chem 28(10):1935–1940. doi:10.1002/cjoc.201090322

    Article  Google Scholar 

  23. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  Google Scholar 

  24. Chu C, Tsai J, Sun C (2012) Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications. Int J Hydrog Energy 37(18):13880–13886. doi:10.1016/j.ijhydene.2012.05.017

    Article  Google Scholar 

  25. Han Y, Shen M, Wu Y, Zhu J, Ding B, Tong H, Zhang X (2013) Preparation and electrochemical performances of PEDOT/sulfonic acid-functionalized graphene composite hydrogel. Synth Met 172:21–27. doi:10.1016/j.synthmet.2013.04.001

    Article  Google Scholar 

  26. Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y (2009) A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2(4):343–348. doi:10.1007/s12274-009-9032-9

    Article  Google Scholar 

  27. Zhou H, Yao W, Li G, Wang J, Lu Y (2013) Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon 59:495–502. doi:10.1016/j.carbon.2013.03.045

    Article  Google Scholar 

  28. Yue G, Wu J, Xiao Y, Lin J, Huang M, Lan Z, Fan L (2013) Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells. Energy 54:315–321. doi:10.1016/j.energy.2013.01.037

    Article  Google Scholar 

  29. Battumur T, Mujawar SJ, Truong QT, Ambade SB, Lee DS, Lee W, Han S, Lee S (2012) Graphene/carbon nanotubes composites as a counter electrode for dye-sensitized solar cells. Curr Appl Phys 12:e49–e53. doi:10.1016/j.cap.2011.04.028

    Article  Google Scholar 

  30. Sudhagar P, Nagarajan S, Lee Y, Song D, Son T, Cho W, Heo M, Lee K, Won J, Kang YS (2011) Synergistic catalytic effect of a composite (CoS/PEDOT:PSS) counter electrode on triiodide reduction in Dye-Sensitized solar cells. ACS Appl Mater Interfaces 3(6):1838–1843. doi:10.1021/am2003735

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ph.D. Programs Foundation of Ministry of Education of China (Grant no. 20114208110004), and the National Natural Science Foundation of China (Grant nos. 51102087 and 21402045). This work was also financially supported by the Program for Middle-aged and Young Talents from Educational Commission of Hubei Province (Grant no. Q20120103), Natural Science Foundation of Hubei Province of China (Grant no. 2014CFB167), and Wuhan Science and Technology Bureau of Hubei Province of China (Grant no. 2013010501010140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Wang, B., Wang, S. et al. Well-dispersed PEDOT:PSS/graphene nanocomposites synthesized by in situ polymerization as counter electrodes for dye-sensitized solar cells. J Mater Sci 50, 2148–2157 (2015). https://doi.org/10.1007/s10853-014-8777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8777-z

Keywords

Navigation