Skip to main content
Erschienen in: Journal of Materials Science 13/2015

01.07.2015 | Original Paper

Effects of sonication energy on the dispersion of carbon nanotubes in a vinyl ester matrix and associated thermo-mechanical properties

verfasst von: S. M. Sabet, H. Mahfuz, J. Hashemi, M. Nezakat, J. A. Szpunar

Erschienen in: Journal of Materials Science | Ausgabe 13/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present paper, we report a systematic examination of sonication energy and the subsequent dispersion condition of nanoparticles in a vinyl ester resin. The nanoparticles were multi-walled carbon nanotubes (MWCNTs) functionalized with carboxylic acid groups. Two nanoparticle concentrations of 0.25 and 0.5 wt% with a variety of sonication amplitudes and duration were considered. Elastic moduli were determined using a 3-point flexural method and a nanoindentation technique. Glass transition temperatures (T g) were also evaluated by differential scanning calorimetry. The dispersion quality of MWCNTs was investigated by high-resolution scanning electron microscopy (HR-SEM). Results indicated that with both concentrations, there is a gradual increase in elastic modulus and T g up to a certain sonication energy level beyond which both properties decreased. However, this threshold energy level varied with MWCNT concentration. For example, the threshold energy level was 60 kJ in case of 0.25 wt% while it was only 15 kJ with 0.5 wt% concentration. It was also observed that regardless of the level of threshold energy, enhancement in properties remained more or less the same. This suggests that there is interplay between particle concentration and sonication energy that dictates the dispersion condition and hence controls the nanocomposite properties. It is further evidenced by SEM studies that nanotubes undergo significant structural changes such as length reduction even at lower energies that eventually limits the threshold level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51:3321–3343CrossRef Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51:3321–3343CrossRef
2.
Zurück zum Zitat Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72:72–84CrossRef Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72:72–84CrossRef
3.
Zurück zum Zitat Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef
4.
Zurück zum Zitat Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef
5.
Zurück zum Zitat Desai AV, Haque MA (2005) Mechanics of the interface for carbon nanotube-polymer composites. Thin-Walled Struct 43:1787–1803CrossRef Desai AV, Haque MA (2005) Mechanics of the interface for carbon nanotube-polymer composites. Thin-Walled Struct 43:1787–1803CrossRef
6.
Zurück zum Zitat Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef
7.
Zurück zum Zitat Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A 41:1345–1367CrossRef Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A 41:1345–1367CrossRef
8.
Zurück zum Zitat Byrne MT, Gun’ko YK (2010) Recent advances in research on carbon nanotube-polymer composites. Adv Mater 22:1672–1688CrossRef Byrne MT, Gun’ko YK (2010) Recent advances in research on carbon nanotube-polymer composites. Adv Mater 22:1672–1688CrossRef
9.
Zurück zum Zitat Song K, Zhang Y, Meng J, Green EC, Tajaddod N, Li H, Minus ML (2013) Structural polymer-based carbon nanotube composite fibers: understanding the processing-structure-performance relationship. Materials 6:2543–2577CrossRef Song K, Zhang Y, Meng J, Green EC, Tajaddod N, Li H, Minus ML (2013) Structural polymer-based carbon nanotube composite fibers: understanding the processing-structure-performance relationship. Materials 6:2543–2577CrossRef
10.
Zurück zum Zitat Sabba Y, Thomas EL (2004) High-concentration dispersion of single-wall carbon nanotubes. Macromolecules 37:4815–4820CrossRef Sabba Y, Thomas EL (2004) High-concentration dispersion of single-wall carbon nanotubes. Macromolecules 37:4815–4820CrossRef
11.
Zurück zum Zitat Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112CrossRef Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112CrossRef
12.
Zurück zum Zitat Grady BP (2010) Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol Rapid Commun 31:247–257CrossRef Grady BP (2010) Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol Rapid Commun 31:247–257CrossRef
13.
Zurück zum Zitat Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295CrossRef Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295CrossRef
14.
Zurück zum Zitat Hilding J, Grulke EA, Zhang ZG, Lockwood F (2003) Dispersion of carbon nanotubes in liquids. J Dispers Sci Technol 24:1–41CrossRef Hilding J, Grulke EA, Zhang ZG, Lockwood F (2003) Dispersion of carbon nanotubes in liquids. J Dispers Sci Technol 24:1–41CrossRef
15.
Zurück zum Zitat Ahir SV, Huang YY, Terentjev EM (2008) Polymers with aligned carbon nanotubes: active composite materials. Polymer 49:3841–3854CrossRef Ahir SV, Huang YY, Terentjev EM (2008) Polymers with aligned carbon nanotubes: active composite materials. Polymer 49:3841–3854CrossRef
16.
Zurück zum Zitat Thostenson ET, Ziaee S, Chou TW (2009) Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Compos Sci Technol 69:801–804CrossRef Thostenson ET, Ziaee S, Chou TW (2009) Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Compos Sci Technol 69:801–804CrossRef
17.
Zurück zum Zitat Seyhan AT, Gojny FH, Tanoğlu M, Schulte K (2007) Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester–polyester suspensions and their nanocomposites. Eur Polym J 43:2836–2847CrossRef Seyhan AT, Gojny FH, Tanoğlu M, Schulte K (2007) Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester–polyester suspensions and their nanocomposites. Eur Polym J 43:2836–2847CrossRef
18.
Zurück zum Zitat Seyhan AT, Tanoğlu M, Schulte K (2009) Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Mater Sci Eng A 523:85–92CrossRef Seyhan AT, Tanoğlu M, Schulte K (2009) Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Mater Sci Eng A 523:85–92CrossRef
19.
Zurück zum Zitat Fan Z, Hsiao KT, Advani SG (2004) Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media. Carbon 42:871–876CrossRef Fan Z, Hsiao KT, Advani SG (2004) Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media. Carbon 42:871–876CrossRef
20.
Zurück zum Zitat Fan Z, Advani SG (2005) Characterization of orientation state of carbon nanotubes in shear flow. Polymer 46:5232–5240CrossRef Fan Z, Advani SG (2005) Characterization of orientation state of carbon nanotubes in shear flow. Polymer 46:5232–5240CrossRef
21.
Zurück zum Zitat Gryshchuk O, Karger-Kocsis J, Thomann R, Kónya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylester—based hybrid resins. Compos Part A 37:1252–1259CrossRef Gryshchuk O, Karger-Kocsis J, Thomann R, Kónya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylester—based hybrid resins. Compos Part A 37:1252–1259CrossRef
22.
Zurück zum Zitat Liao SH, Hung CH, Ma CCM, Yen CY, Lin YF, Weng CC (2008) Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 176:175–182CrossRef Liao SH, Hung CH, Ma CCM, Yen CY, Lin YF, Weng CC (2008) Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 176:175–182CrossRef
23.
Zurück zum Zitat Liao SH, Hsiao MC, Yen CY, Ma CCM, Lee SJ, Su A, Tsai MC, Yen MY, Liu PL (2010) Novel functionalized carbon nanotubes as cross-links reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 195:7808–7817CrossRef Liao SH, Hsiao MC, Yen CY, Ma CCM, Lee SJ, Su A, Tsai MC, Yen MY, Liu PL (2010) Novel functionalized carbon nanotubes as cross-links reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 195:7808–7817CrossRef
24.
Zurück zum Zitat Avilés F, Cauich-Rodríguez JV, Rodríguez-González JA, May-Pat A (2011) Oxidation and silanization of MWCNTs for MWCNT/vinyl ester composites. Express Polym Lett 5:766–776CrossRef Avilés F, Cauich-Rodríguez JV, Rodríguez-González JA, May-Pat A (2011) Oxidation and silanization of MWCNTs for MWCNT/vinyl ester composites. Express Polym Lett 5:766–776CrossRef
25.
Zurück zum Zitat ASTM D790-10 (2010) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA. doi:10.1520/D0790-10 ASTM D790-10 (2010) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA. doi:10.​1520/​D0790-10
26.
Zurück zum Zitat ASTM E2546-07 (2007) Standard practice for instrumented indentation testing. ASTM International, West Conshohocken, PA. doi:10.1520/E2546-07 ASTM E2546-07 (2007) Standard practice for instrumented indentation testing. ASTM International, West Conshohocken, PA. doi:10.​1520/​E2546-07
27.
Zurück zum Zitat Poveda R, Gupta N, Porfiri M (2010) Poisson’s ratio of hollow particle filled composites. Mater Lett 64:2360–2362CrossRef Poveda R, Gupta N, Porfiri M (2010) Poisson’s ratio of hollow particle filled composites. Mater Lett 64:2360–2362CrossRef
28.
Zurück zum Zitat Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef
29.
Zurück zum Zitat ASTM E1356-08 (2014) Standard test method for assignment of the glass transition temperatures by differential scanning calorimetry. ASTM International, West Conshohocken, PA. doi:10.1520/E1356 ASTM E1356-08 (2014) Standard test method for assignment of the glass transition temperatures by differential scanning calorimetry. ASTM International, West Conshohocken, PA. doi:10.​1520/​E1356
30.
Zurück zum Zitat Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design, 3rd edn. CRC Press, Boca RatonCrossRef Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design, 3rd edn. CRC Press, Boca RatonCrossRef
31.
Zurück zum Zitat Shtein M, Nadiv R, Lachman N, Wagner HD, Regev O (2013) Fracture behavior of nanotube-polymer composites: insights on surface roughness and failure mechanism. Compos Sci Technol 87:157–163CrossRef Shtein M, Nadiv R, Lachman N, Wagner HD, Regev O (2013) Fracture behavior of nanotube-polymer composites: insights on surface roughness and failure mechanism. Compos Sci Technol 87:157–163CrossRef
32.
Zurück zum Zitat Kim MG, Moon JB, Kim CG (2012) Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Compos Part A 43:1620–1627CrossRef Kim MG, Moon JB, Kim CG (2012) Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Compos Part A 43:1620–1627CrossRef
33.
Zurück zum Zitat Shokrieh MM, Hosseinkhani MR, Naimi-Jamal MR, Tourani H (2013) Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polym Test 32:45–51CrossRef Shokrieh MM, Hosseinkhani MR, Naimi-Jamal MR, Tourani H (2013) Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polym Test 32:45–51CrossRef
34.
Zurück zum Zitat Iijima M, Muguruma T, Brantley WA, Mizoguchi I (2011) Comparisons of nanoindentation, 3-point bending, and tension tests for orthodontic wires. Am J Orthod Dentofac Orthop 140:65–71CrossRef Iijima M, Muguruma T, Brantley WA, Mizoguchi I (2011) Comparisons of nanoindentation, 3-point bending, and tension tests for orthodontic wires. Am J Orthod Dentofac Orthop 140:65–71CrossRef
35.
Zurück zum Zitat Martinez R, Xu LR (2014) Comparison of the Young’s moduli of polymers measured from nanoindentation and bending experiments. MRS Commun 4:89–93 Martinez R, Xu LR (2014) Comparison of the Young’s moduli of polymers measured from nanoindentation and bending experiments. MRS Commun 4:89–93
36.
Zurück zum Zitat Gkikas G, Barkoula NM, Paipetis AS (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos Part B 43:2697–2705CrossRef Gkikas G, Barkoula NM, Paipetis AS (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos Part B 43:2697–2705CrossRef
37.
Zurück zum Zitat Montazeri A, Chitsazzadeh M (2014) Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 56:500–508CrossRef Montazeri A, Chitsazzadeh M (2014) Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 56:500–508CrossRef
38.
Zurück zum Zitat Hull D, Clyne TW (1996) An introduction to composite materials, 2nd edn. Cambridge University Press, CambridgeCrossRef Hull D, Clyne TW (1996) An introduction to composite materials, 2nd edn. Cambridge University Press, CambridgeCrossRef
39.
Zurück zum Zitat Ma PC, Kim JK, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972CrossRef Ma PC, Kim JK, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972CrossRef
40.
Zurück zum Zitat Siddiqui NA, Woo RSC, Kim JK, Leung CCK, Munir A (2007) Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos Part A 38:449–460CrossRef Siddiqui NA, Woo RSC, Kim JK, Leung CCK, Munir A (2007) Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos Part A 38:449–460CrossRef
41.
Zurück zum Zitat Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Palpetis A (2009) Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J Compos Mater 43:977–985CrossRef Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Palpetis A (2009) Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J Compos Mater 43:977–985CrossRef
42.
Zurück zum Zitat Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215CrossRef Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215CrossRef
43.
Zurück zum Zitat Chakraborty AK, Plyhm T, Barbezat M, Necola A, Terrasi GP (2011) Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion. J Nanopart Res 13:6493–6506CrossRef Chakraborty AK, Plyhm T, Barbezat M, Necola A, Terrasi GP (2011) Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion. J Nanopart Res 13:6493–6506CrossRef
44.
Zurück zum Zitat Mukhopadhyay K, Dwivedi CD, Mathur GN (2002) Conversion of carbon nanotubes to carbon nanofibers by sonication. Carbon 40:1373–1376CrossRef Mukhopadhyay K, Dwivedi CD, Mathur GN (2002) Conversion of carbon nanotubes to carbon nanofibers by sonication. Carbon 40:1373–1376CrossRef
45.
Zurück zum Zitat Battisti A, Skordos AA, Partridge IK (2009) Monitoring dispersion of carbon nanotubes in a thermosetting polyester resin. Compos Sci Technol 69:1516–1520CrossRef Battisti A, Skordos AA, Partridge IK (2009) Monitoring dispersion of carbon nanotubes in a thermosetting polyester resin. Compos Sci Technol 69:1516–1520CrossRef
46.
Zurück zum Zitat Tehrani M, Safdari M, Al-Haik MS (2011) Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int J Plast 27:887–901CrossRef Tehrani M, Safdari M, Al-Haik MS (2011) Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int J Plast 27:887–901CrossRef
47.
Zurück zum Zitat Yang J, Zhang Z, Friedrich K, Schlarb AK (2007) Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes. Macromol Rapid Commun 28:955–961CrossRef Yang J, Zhang Z, Friedrich K, Schlarb AK (2007) Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes. Macromol Rapid Commun 28:955–961CrossRef
48.
Zurück zum Zitat Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G (2007) The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48:5662–5670CrossRef Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G (2007) The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48:5662–5670CrossRef
49.
Zurück zum Zitat Kathi J, Rhee KY, Lee JH (2009) Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Compos A 40:800–809CrossRef Kathi J, Rhee KY, Lee JH (2009) Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Compos A 40:800–809CrossRef
Metadaten
Titel
Effects of sonication energy on the dispersion of carbon nanotubes in a vinyl ester matrix and associated thermo-mechanical properties
verfasst von
S. M. Sabet
H. Mahfuz
J. Hashemi
M. Nezakat
J. A. Szpunar
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9024-y

Weitere Artikel der Ausgabe 13/2015

Journal of Materials Science 13/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.