Skip to main content
Log in

A simple way to synthesize anatase with high thermal stability

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple and cost-effective method was proposed to synthesize nano-crystallized pure anatase titanium dioxide (TiO2) photocatalysts with a high thermal stability. The initial TiCl4 was reacted with a NaOH aqueous solution to form an amorphous sodium titanate, which was then transformed into an amorphous titanium dioxide hydrate through the replacement of Na+ by H+ using a HCl aqueous solution. After annealing, the pure nano-crystallized anatase TiO2 particles possessed a high thermal stability up to 900 °C. The high concentration of NaOH aqueous solution played an important role in preventing the precipitation of rutile TiO2 during hydrolysis process and promoting the formation of the nano-crystallized anatase TiO2. Samples calcined at 800 °C exhibited a significantly higher repeatable photocatalytic activity compared to the standard commercial photocatalyst P25 for the degradation of Rhodamine B in an aqueous suspension. This could be attributed to the synergistic effect of high crystallinity and mesoporous structure. The method is very simple, template-free, and cost effective, which makes it potential for the large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang R, Elzatahry AA, Al-Deyab SS, Zhao D (2012) Mesoporous titania: from synthesis to application. Nano Today 7:344–366

    Article  Google Scholar 

  2. Froschl T, Hormann U, Kubiak P, Kucerova G, Pfanzelt M, Weiss CK, Behm RJ, Husing N et al (2012) High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev 41:5313–5360

    Article  Google Scholar 

  3. Bumajdad A, Madkour M, Abdel-Moneam Y, El-Kemary M (2013) Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49:1743–1754. doi:10.1007/s10853-013-7861-0

    Article  Google Scholar 

  4. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    Article  Google Scholar 

  5. Arun TA, Chacko DK, Madhavan AA, Deepak TG, Anjusree GS, Sara T, Ramakrishna S, Nair SV et al (2014) Flower-shaped anatase TiO2 mesostructures with excellent photocatalytic properties. RSC Adv 4:1421–1424

    Article  Google Scholar 

  6. Nair AS, Yang SY, Zhu PN, Ramakrishna S (2010) Rice grain-shaped TiO2 mesostructures by electrospinning for dye-sensitized solar cells. Chem Commun 46:7421–7423

    Article  Google Scholar 

  7. Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21:16304–16322

    Article  Google Scholar 

  8. Di Lupo F, Tuel A, Mendez V, Francia C, Meligrana G, Bodoardo S, Gerbaldi C (2014) Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes. Acta Mater 69:60–67

    Article  Google Scholar 

  9. Colmenares-Angulo JR, Cannillo V, Lusvarghi L, Sola A, Sampath S (2008) Role of process type and process conditions on phase content and physical properties of thermal sprayed TiO2 coatings. J Mater Sci 44:2276–2287. doi:10.1007/s10853-008-3044-9

    Article  Google Scholar 

  10. Li W, Bai Y, Liu C, Yang ZH, Feng X, Lu XH, van der Laak NK, Chan KY (2009) Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis. Environ Sci Technol 43:5423–5428

    Article  Google Scholar 

  11. Ovenstone J, Yanagisawa K (1999) Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination. Chem Mater 11:2770–2774

    Article  Google Scholar 

  12. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S (2002) A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Ed 41:2811–2813

    Article  Google Scholar 

  13. Dhage SR, Pasricha R, Ravi V (2003) Synthesis of ultrafine TiO2 by citrate gel method. Mater Res Bull 38:1623–1628

    Article  Google Scholar 

  14. Huang PJ, Chang H, Yeh CT, Tsai CW (1997) Phase transformation of TiO2 monitored by thermo-Raman spectroscopy with TGA/DTA. Thermochim Acta 297:85–92

    Article  Google Scholar 

  15. Kominami H, Takada Y, Yamagiwa H, Kera Y, Inoue M, Inui T (1996) Synthesis of thermally stable nanocrystalline anatase by high-temperature hydrolysis of titanium alkoxide with water dissolved in organic solvent from gas phase. J Mater Sci Lett 15:197–200

    Article  Google Scholar 

  16. Schliesser JM, Smith SJ, Li G et al (2015) Heat capacity and thermodynamic functions of nano-TiO2 anatase in relation to bulk-TiO2 anatase. J Chem Thermodyn 81:298–310

    Article  Google Scholar 

  17. Rao BM, Roy SC (2014) Anatase TiO2 nanotube arrays with high temperature stability. Rsc Adv 4:38133–38139

    Article  Google Scholar 

  18. Hanaor DAH, Sorrell CC (2010) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. doi:10.1007/s10853-010-5113-0

    Article  Google Scholar 

  19. Zhou W, Sun F, Pan K, Tian G, Jiang B, Ren Z, Tian C, Fu H (2011) Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Funct Mater 21:1922–1930

    Article  Google Scholar 

  20. Chen WB, Ma ZJ, Pan XZ, Hu ZL, Dong GP, Zhou SF, Peng MY, Qiu JR (2014) Core@dual-shell nanoporous SiO2-TiO2 composite fibers with high flexibility and its photocatalytic activity. J Am Ceram Soc 97:1944–1951

    Article  Google Scholar 

  21. Dong WY, Sun YJ, Lee CW, Hua WM, Lu XC, Shi YF, Zhang SC, Chen JM, Zhao Dongyuan (2007) Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. J Am Chem Soc 129:13894–13904

    Article  Google Scholar 

  22. Reidy DJ, Holmes JD, Nagle C, Morris MA (2005) A highly thermally stable anatase phase prepared by doping with zirconia and silica coupled to a mesoporous type synthesis technique. J Mater Chem 15:3494–3500

    Article  Google Scholar 

  23. Gennari FC, Pasquevich DM (1998) Kinetics of the anatase rutile transformation in TiO2 in the presence of Fe2O3. J Mater Sci 33:1571–1578. doi:10.1023/A:1017515804370

    Article  Google Scholar 

  24. Xie TH, Lin J (2007) Origin of photocatalytic deactivation of TiO2 film coated on ceramic substrate. J Phys Chem C 111:9968–9974

    Article  Google Scholar 

  25. Nam HJ, Amemiya T, Murabayashi M, Toh K (2004) Photocatalytic activity of sol-gel TiO2 thin films on various kinds of glass substrates: the effects of Na+ and primary particle size. J Phys Chem B 108:8254–8259

    Article  Google Scholar 

  26. Peng X, Chen A (2006) Large-scale synthesis and characterization of TiO2-based nanostructures on Ti substrates. Adv Funct Mater 16:1355–1362

    Article  Google Scholar 

  27. Liu H, Yang D, Zheng Z, Ke X, Waclawik E, Zhu H, Frost RL (2010) A Raman spectroscopic and TEM study on the structural evolution of Na2Ti3O7 during the transition to Na2Ti6O13. J Raman Spectrosc 41:1331–1337

    Article  Google Scholar 

  28. Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci 8:341–347. doi:10.1023/A:1018524731409

    Google Scholar 

  29. Ocana M, Garciaramos JV, Serna CJ (1992) Low-temperature nucleation of rutile observed by Raman-spectroscopy during crystallization of TiO2. J Am Ceram Soc 75:2010–2012

    Article  Google Scholar 

  30. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  Google Scholar 

  31. Byeon SH, Lee SO, Kim H (1997) Structure and Raman spectra of layered titanium oxides. J Solid State Chem 130:110–116

    Article  Google Scholar 

  32. Li J, Wang GZ, Wang HQ, Tang CJ, Wang YQ, Liang CH, Cai WP, Zhang LD (2009) In situ self-assembly synthesis and photocatalytic performance of hierarchical Bi0.5Na0.5TiO3 micro/nanostructures. J Mater Chem 19:2253–2258

    Article  Google Scholar 

  33. Padmanabhan SC, Pillai SC, Colreavy J, Balakrishnan S, McCormack DE, Perova TS, Gun’ko Y, Hinder SJ, Kelly JM (2007) A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania. Chem Mater 19:4474–4481

    Article  Google Scholar 

  34. Ji W, Lee MH, Hao LY, Xu X, Agathopoulos S, Zheng D, Fang C (2015) Role of oxygen vacancy on the photoluminescence of BaMgSiO4: Eu phosphors: experimental and theoretical analysis. Inorg Chem 54:1556–1562

    Article  Google Scholar 

  35. Ju LC, Xu X, Hao LY, Lin Y, Lee MH (2015) Modification of the coordination environment of Eu2+ in Sr2SiO4: Eu2+ phosphors to achieve full color emission. J Mater Chem C 3:1567–1575

    Article  Google Scholar 

  36. Chen B, Zhang HZ, Gilbert B, Banfield JF (2007) Mechanism of inhibition of nanoparticle growth and phase transformation by surface impurities. Phys Rev Lett 98:10613

    Google Scholar 

  37. Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M (1999) Charge carrier dynamics of standard TiO2 catalysts revealed by femtosecond diffuse reflectance spectroscopy. J Phys Chem B 103:3120–3127

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51072191, 11179037), National Basic Research Program of China (973 Program, 2012CB922004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, P., Cai, C., Zhong, H. et al. A simple way to synthesize anatase with high thermal stability. J Mater Sci 50, 5944–5951 (2015). https://doi.org/10.1007/s10853-015-9117-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9117-7

Keywords

Navigation