Skip to main content
Log in

Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide and reduced graphene oxide were obtained from graphite and reduction of graphene oxide, respectively, and functionalized with 4,4′-Methylenebis (phenyl isocyanate) isocyanate. Epoxy/graphene-based composites were prepared by dispersing the as-prepared carbon materials in epoxy resin based on diglycidyl ether of bisphenol A followed by curing with triethylenetetramine. The efficiency of the functionalization of the carbon materials was followed by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoeletronic spectroscopy, and atomic force microscopy. The epoxy-based composites were characterized by dynamic mechanical analysis at frequency and temperature sweeps in order to evaluate the long-term behavior of the composites by using the time temperature superposition principles and the master curves of multi frequency. All composites presented better working temperature range and durability as compared with the pure epoxy network. However, those prepared with graphene oxide and its reduced form functionalized with isocyanate groups presented better mechanical performance and long-term durability, probably because of the better filler-matrix interactions achieved in theses system. The results obtained suggest that the presence of isocyanate groups is the key role for achieving good mechanical performance, and the reduction step of graphene oxide is not of paramount importance for achieving good mechanical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer (Guildf) 52:5–25

    Article  Google Scholar 

  2. Tkachev SV, Buslaeva EY, Gubin SP (2010) Graphene: a novel carbon nanomaterial. Inorg Mater 47:1–10

    Article  Google Scholar 

  3. Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL et al (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10

    Article  Google Scholar 

  4. King JA, Klimek DR, Miskioglu I, Odegard GM (2013) Mechanical properties of graphene nanoplatelet/epoxy composites. J Appl Polym Sci 128:4217–4223

    Article  Google Scholar 

  5. Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290

    Article  Google Scholar 

  6. Im H, Kim J (2012) Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon 50:5429–5440

    Article  Google Scholar 

  7. Min C, Yu D, Cao J, Wang G, Feng L (2013) A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55:116–125

    Article  Google Scholar 

  8. Ribeiro H, Silva WM, Rodrigues M-TF, Neves JC, Paniago R, Fantini C et al (2013) Glass transition improvement in epoxy/graphene composites. J Mater Sci 48:7883–7892. doi:10.1007/s10853-013-7478-3

    Article  Google Scholar 

  9. Wang X, Xing W, Zhang P, Song L, Yang H, Hu Y (2012) Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos Sci Technol 72:737–743

    Article  Google Scholar 

  10. Starkova O, Chandrasekaran S, Prado LASA, Tölle F, Mülhaupt R, Schulte K (2013) Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites. Polym Degrad Stab 98:519–526

    Article  Google Scholar 

  11. Shen X-J, Pei X-Q, Fu S-Y, Friedrich K (2013) Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer (Guildf) 54:1234–1242

    Article  Google Scholar 

  12. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  13. Gao H, Song L, Guo W, Huang L, Yang D, Wang F et al (2012) A simple method to synthesize continuous large area nitrogen-doped graphene. Carbon 50:4476–4482

    Article  Google Scholar 

  14. Yan-Jun W, Long-Cheng T, Dong Y, Li Z, Yi-Bao L, Lian-Bin W, Jian-Xiong J, Guo-Qiao L (2013) Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos Sci Technol 82:60–68

    Article  Google Scholar 

  15. Naebe et al (2014) Mechanical properties and structure of covalent functionalized graphene/epoxy nanocomposites. Sci Rep 4:4375

    Article  Google Scholar 

  16. Park S, Kim DS (2014) Preparation and physical properties of an epoxy nanocomposite with amine-functionalized graphenes. Polym Eng Sci 54:985–991

    Article  Google Scholar 

  17. Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem 20:9635

    Article  Google Scholar 

  18. Kim K-S, Jeon I-Y, Ahn S-N, Kwon Y-D, Baek J-B (2011) Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin. J Mater Chem 21:7337

    Article  Google Scholar 

  19. Liu K, Chen S, Luo Y, Jia D, Gao H, Hu G et al (2013) Edge-functionalized graphene as reinforcement of epoxy-based conductive composite for electrical interconnects. Compos Sci Technol 88:84–91

    Article  Google Scholar 

  20. Jiang T, Kuila T, Kim NH, Ku B-C, Lee JH (2013) Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos Sci Technol 79:115–125

    Article  Google Scholar 

  21. Li Z, Wang R, Young RJ, Deng L, Yang F, Hao L et al (2013) Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer (Guildf) 54:6437–6446

    Article  Google Scholar 

  22. Tang X-Z, Li W, Yu Z-Z, Rafiee MA, Rafiee J, Yavari F et al (2011) Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. Carbon 49:1258–1265

    Article  Google Scholar 

  23. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Article  Google Scholar 

  24. Xu C, Wu X, Zhu J, Wang X (2008) Synthesis of amphiphilic graphite oxide. Carbon 46:386–389. doi:10.1016/j.carbon.2007.11.045

    Article  Google Scholar 

  25. Zhang B, Chen Y, Zhuang X, Liu G, Yu B, Kang E-T et al (2010) Poly(N-vinylcarbazole) chemically modified graphene oxide. J Polym Sci Part A 48:2642–2649

    Article  Google Scholar 

  26. Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21:4222

    Article  Google Scholar 

  27. Zhang L-B, Wang J-Q, Wang H-G, Xu Y, Wang Z-F, Li Z-P et al (2012) Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos Part A Appl Sci Manuf 43:1537–1545

    Article  Google Scholar 

  28. Zaman I, Phan TT, Kuan H-C, Meng Q, La Bao LT, Luong L et al (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer (Guildf) 52:1603–1611

    Article  Google Scholar 

  29. Menard KP (2008) Dynamic mechanical analysis: a practical introduction, 2nd edn. CRC Press, LLC, Boca Raton, pp 45–260 ISBN: 978-1-4200-5312-8

    Book  Google Scholar 

  30. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701

    Article  Google Scholar 

  31. Yao Z, Wu D, Chen C, Zhang M (2013) Composites : part A Creep behavior of polyurethane nanocomposites with carbon nanotubes. Compos Part A 50:65–72

    Article  Google Scholar 

  32. Pistor V, Barbosa LG, Soares BG, Mauler RS (2012) Relaxation phenomena in the glass transition of epoxy/N-phenylaminopropyl—POSS nanocomposites. Polymer (Guildf) 53:5798–5805

    Article  Google Scholar 

  33. Ferry D (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    Article  Google Scholar 

  34. Naya S, Meneses A, Tarrío-Saavedra J, Artiaga R, López-Beceiro J, Gracia-Fernández C (2013) New method for estimating shift factors in time–temperature superposition models. J Therm Anal Calorim 113:453–460

    Article  Google Scholar 

  35. Tsang CF, Hui HK (2001) Multiplexing frequency mode study of packaging epoxy molding compounds using dynamic mechanical analysis. Thermochim Acta 367–368:93–99

    Article  Google Scholar 

  36. Li R (2000) Time-temperature superposition method for glass transition temperature of plastic materials. Mater Sci Eng A 278:36–45

    Article  Google Scholar 

  37. Liu K, Zhang J-J, Cheng F-F, Zheng T-T, Wang C, Zhu J-J (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21:12034

    Article  Google Scholar 

  38. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  39. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  Google Scholar 

  40. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023

    Article  Google Scholar 

  41. Szabó T, Berkesi O, Dékány I (2005) DRIFT study of deuterium-exchanged graphite oxide. Carbon 43:3186–3189

    Article  Google Scholar 

  42. Hontoria-Lucas C, López-Peinado AJ, López-González JDD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592

    Article  Google Scholar 

  43. Li D, Müller MB, Scott G, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  44. Tuinstra F (1970) Raman spectrum of graphite. J Chem Phys 53:1126

    Article  Google Scholar 

  45. Tessonnier J-P, Barteau MA (2012) Dispersion of alkyl-chain-functionalized reduced graphene oxide sheets in nonpolar solvents. Langmuir 28(16):6691–6697

    Article  Google Scholar 

  46. Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  Google Scholar 

  47. Wei A, Wang J, Long Q, Liu X, Li X, Dong X et al (2011) Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide. Mater Res Bull 46:2131–2134

    Article  Google Scholar 

  48. Siokou A, Ravani F, Karakalos S, Frank O, Kalbac M, Galiotis C (2011) Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study. Appl Surf Sci 257:9785–9790

    Article  Google Scholar 

  49. Chen J, Zhang X, Zheng X, Liu C, Cui X, Zheng W (2013) Size distribution-controlled preparation of graphene oxide nanosheets with different C/O ratios. Mater Chem Phys 139:8–11

    Article  Google Scholar 

  50. Zhao C, Ji L, Liu H, Hu G, Zhang S, Yang M et al (2004) Functionalized carbon nanotubes containing isocyanate groups. J Solid State Chem 177:4394–4398

    Article  Google Scholar 

  51. Wang W-P, Pan C-Y (2004) Synthesis and characterizations of poly(ethylene oxide) methyl ether grafted on the expanded graphite with isocyanate groups. Eur Polym J 40:543–548

    Article  Google Scholar 

  52. Yao Z, Wu D, Chen C, Zhang M (2013) Creep behavior of polyurethane nanocomposites with carbon nanotubes. Compos Part A Appl Sci Manuf 50:65–72

    Article  Google Scholar 

  53. Mano JF, Viana JC (2006) Stress–strain experiments as a mechanical spectroscopic technique to characterise the glass transition dynamics in poly(ethylene terephthalate). Polym Test 25:953–960

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the following Agencies in Brazil: Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Financiadora de Estudos e Projetos—FINEP, Coordenação de Aperfeiçoamento de Pessoal de Nível superior—CAPES, Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luís C. O. Silva or Bluma G. Soares.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.C.O., Silva, G.G., Ajayan, P.M. et al. Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis. J Mater Sci 50, 6407–6419 (2015). https://doi.org/10.1007/s10853-015-9193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9193-8

Keywords

Navigation