Skip to main content
Erschienen in: Journal of Materials Science 5/2016

01.03.2016 | Original Paper

Detailed dynamic rheological studies of multiwall carbon nanotube-reinforced acrylonitrile butadiene styrene composite

verfasst von: Jeevan Jyoti, Bhanu Pratap Singh, Sheetal Rajput, Vidya Nand Singh, S. R. Dhakate

Erschienen in: Journal of Materials Science | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic rheological properties of multiwalled carbon nanotubes-(MWCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites prepared by micro twin-screw extruder with back flow channel (used for proper dispersion) are reported. Scanning electron microscopic and high-resolution transmission electron microscopic studies showed that the nanotubes were uniformly dispersed in the ABS polymer matrix. MWCNT forms a network throughout the polymer matrix and thus promotes the reinforcement. The rheological studies showed that (for 3 wt% of MWCNTs loading) the material undergoes viscous to elastic transition. At a higher MWCNTs concentration nematic gel-like phase is observed where both storage and loss modulus (G′ and G″) are nearly independent of frequency. van Gurp–Palmen plot has been used to determine the viscoelastic properties. Dynamic intersection frequency has been used to correlate the rheological properties with different wt% of MWCNTs loading in ABS. Dynamic rheological measurements revealed the viscous-like (G″ > G′) behaviour at a lower MWCNTs loading (<3 wt%) and elastic-like behaviour for higher loading (>3 wt%).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255CrossRef Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255CrossRef
2.
Zurück zum Zitat Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944CrossRef Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944CrossRef
3.
Zurück zum Zitat Singh BP, Choudhary V, Teotia S, Gupta TK, Nand V, Singh VN, Dhakate SR, Mathur RB (2015) Solvent free, efficient, industrially viable, fast dispersion process based amine modified MWCNT reinforced epoxy composites of superior mechanical properties. Adv Mater Lett 6(2):104–113 Singh BP, Choudhary V, Teotia S, Gupta TK, Nand V, Singh VN, Dhakate SR, Mathur RB (2015) Solvent free, efficient, industrially viable, fast dispersion process based amine modified MWCNT reinforced epoxy composites of superior mechanical properties. Adv Mater Lett 6(2):104–113
4.
Zurück zum Zitat Díez-Pascual AM, Gascón D (2013) Carbon nanotube buckypaper reinforced acrylonitrile–butadiene–styrene composites for electronic applications. ACS Appl Mater Interfaces 5:12107–12119CrossRef Díez-Pascual AM, Gascón D (2013) Carbon nanotube buckypaper reinforced acrylonitrile–butadiene–styrene composites for electronic applications. ACS Appl Mater Interfaces 5:12107–12119CrossRef
5.
Zurück zum Zitat Chen H, Chen M, Di J, Xu G, Li H, Li Q (2012) Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C 116:3903–3909CrossRef Chen H, Chen M, Di J, Xu G, Li H, Li Q (2012) Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C 116:3903–3909CrossRef
6.
Zurück zum Zitat Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef
7.
Zurück zum Zitat Pande S, Chaudhary A, Patel D, Singh BP, Mathur RB (2014) Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. RSC Adv 4:13839–13849CrossRef Pande S, Chaudhary A, Patel D, Singh BP, Mathur RB (2014) Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. RSC Adv 4:13839–13849CrossRef
8.
Zurück zum Zitat Dalton AB, Collins S, Muñoz E, Razal JM, Ebron VH, Ferraris JP, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703CrossRef Dalton AB, Collins S, Muñoz E, Razal JM, Ebron VH, Ferraris JP, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703CrossRef
9.
Zurück zum Zitat Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17:1186–1191CrossRef Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17:1186–1191CrossRef
10.
Zurück zum Zitat Babal A, Gupta R, Singh BP, Dhakate SR (2015) Depression in glass transition temperature of multiwalled carbon nanotubes reinforced polycarbonate composites: effect of functionalization. RSC Adv 5:43462–43472CrossRef Babal A, Gupta R, Singh BP, Dhakate SR (2015) Depression in glass transition temperature of multiwalled carbon nanotubes reinforced polycarbonate composites: effect of functionalization. RSC Adv 5:43462–43472CrossRef
11.
Zurück zum Zitat Gupta TK, Singh BP, Dhakate SR, Singh VN, Mathur RB (2013) Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A 1:9138–9149CrossRef Gupta TK, Singh BP, Dhakate SR, Singh VN, Mathur RB (2013) Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A 1:9138–9149CrossRef
12.
Zurück zum Zitat Babal A, Gupta R, Singh BP, Singh VN, Mathur RB, Dhakate SR (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by an industrial viable twin screw extruder with back flow channel. RSC Adv 4:64649–64658CrossRef Babal A, Gupta R, Singh BP, Singh VN, Mathur RB, Dhakate SR (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by an industrial viable twin screw extruder with back flow channel. RSC Adv 4:64649–64658CrossRef
13.
Zurück zum Zitat Singh BP, Saket D, Singh A, Pati S, Gupta TK, Singh VN, Mathur RB (2015) Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes. J Mater Chem A 3:13203–13209CrossRef Singh BP, Saket D, Singh A, Pati S, Gupta TK, Singh VN, Mathur RB (2015) Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes. J Mater Chem A 3:13203–13209CrossRef
14.
Zurück zum Zitat Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290–13298CrossRef Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290–13298CrossRef
15.
Zurück zum Zitat Yang J, Wang C, Wang K, Zhang Q, Chen F, Du R, Fu Q (2009) Direct formation of nanohybrid shish-kebab in the injection molded bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 42(18):7016–7023CrossRef Yang J, Wang C, Wang K, Zhang Q, Chen F, Du R, Fu Q (2009) Direct formation of nanohybrid shish-kebab in the injection molded bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 42(18):7016–7023CrossRef
16.
Zurück zum Zitat Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169CrossRef Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169CrossRef
17.
Zurück zum Zitat Marceau S, Dubois P, Fulchiron R, Cassagnau P (2009) Viscoelasticity of Brownian carbon nanotubes in PDMS semidilute regime. Macromolecules 42:1433–1438CrossRef Marceau S, Dubois P, Fulchiron R, Cassagnau P (2009) Viscoelasticity of Brownian carbon nanotubes in PDMS semidilute regime. Macromolecules 42:1433–1438CrossRef
18.
Zurück zum Zitat Yang S, Castilleja JR, Barrera E, Lozano K (2004) Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polym Degrad Stab 83:383–388CrossRef Yang S, Castilleja JR, Barrera E, Lozano K (2004) Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polym Degrad Stab 83:383–388CrossRef
19.
Zurück zum Zitat Al-Saleh MH, Al-Anid HK, Husain YA, El-Ghanem HM, Jawad SA (2013) Impedance characteristics and conductivity of CNT/ABS nanocomposites. J Phys D 46:385305–385313CrossRef Al-Saleh MH, Al-Anid HK, Husain YA, El-Ghanem HM, Jawad SA (2013) Impedance characteristics and conductivity of CNT/ABS nanocomposites. J Phys D 46:385305–385313CrossRef
20.
Zurück zum Zitat Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef
21.
Zurück zum Zitat Liang G, Tjong S (2006) Electrical properties of low-density polyethylene/multiwall carbon nanotube nanocomposites. Mater Chem Phys 100:132–137CrossRef Liang G, Tjong S (2006) Electrical properties of low-density polyethylene/multiwall carbon nanotube nanocomposites. Mater Chem Phys 100:132–137CrossRef
22.
Zurück zum Zitat Pötschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42:965–969CrossRef Pötschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42:965–969CrossRef
23.
Zurück zum Zitat Chatterjee T, Krishnamoorti R (2013) Rheology of polymer carbon nanotubes composites. Soft Matter 9:9515–9529CrossRef Chatterjee T, Krishnamoorti R (2013) Rheology of polymer carbon nanotubes composites. Soft Matter 9:9515–9529CrossRef
24.
Zurück zum Zitat Poetschke P, Arnaldo MH, Radusch H-J (2012) Percolation behavior and mehanical properties of polycarbonate composites filled with carbon black/carbon nanotube systems. Polimery 57:204–211CrossRef Poetschke P, Arnaldo MH, Radusch H-J (2012) Percolation behavior and mehanical properties of polycarbonate composites filled with carbon black/carbon nanotube systems. Polimery 57:204–211CrossRef
25.
Zurück zum Zitat Wang J, Yang J, Deng L, Fang H, Zhang Y, Wang Z (2015) More dominant shear flow effect assisted by added carbon nanotubes on crystallization kinetics of isotactic polypropylene in nanocomposites. ACS Appl Mater Interfaces 7:1364–1375CrossRef Wang J, Yang J, Deng L, Fang H, Zhang Y, Wang Z (2015) More dominant shear flow effect assisted by added carbon nanotubes on crystallization kinetics of isotactic polypropylene in nanocomposites. ACS Appl Mater Interfaces 7:1364–1375CrossRef
26.
Zurück zum Zitat Rostami A, Masoomi M, Fayazi MJ, Vahdati M (2015) Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv 5:32880CrossRef Rostami A, Masoomi M, Fayazi MJ, Vahdati M (2015) Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv 5:32880CrossRef
27.
Zurück zum Zitat Bouhfid R, Arrakhiz FZ, Qaiss A (2014) Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide, 6/acrylonitrile–butadiene–styrene blends. Polym Compos. doi:10.1002/pc.23259 Bouhfid R, Arrakhiz FZ, Qaiss A (2014) Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide, 6/acrylonitrile–butadiene–styrene blends. Polym Compos. doi:10.​1002/​pc.​23259
28.
Zurück zum Zitat Mathur RB, Chatterjee S, Singh BP (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68:1608–1614CrossRef Mathur RB, Chatterjee S, Singh BP (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68:1608–1614CrossRef
29.
Zurück zum Zitat Singh BP, Saini K, Choudhary V, Teotia S, Pande S, Saini P, Mathur RB (2014) Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites. J Nanopart Res 16:2161–2172CrossRef Singh BP, Saini K, Choudhary V, Teotia S, Pande S, Saini P, Mathur RB (2014) Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites. J Nanopart Res 16:2161–2172CrossRef
30.
Zurück zum Zitat Jyoti J, Basu S, Singh BP, Dhakate SR (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos B 83:58–65CrossRef Jyoti J, Basu S, Singh BP, Dhakate SR (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos B 83:58–65CrossRef
31.
Zurück zum Zitat Payne A, Whittaker R (1971) Low strain dynamic properties of filled rubbers. Rubber Chem Technol 44:440–478CrossRef Payne A, Whittaker R (1971) Low strain dynamic properties of filled rubbers. Rubber Chem Technol 44:440–478CrossRef
32.
Zurück zum Zitat Seo M-K, Park S-J (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395:44–48CrossRef Seo M-K, Park S-J (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395:44–48CrossRef
33.
Zurück zum Zitat Abdel-Goad M, Pötschke P, Zhou D, Mark JE, Heinrich G (2007) Preparation and rheological characterization of polymer nanocomposites based on expanded graphite. J Macromol Sci Part A 44:591–598CrossRef Abdel-Goad M, Pötschke P, Zhou D, Mark JE, Heinrich G (2007) Preparation and rheological characterization of polymer nanocomposites based on expanded graphite. J Macromol Sci Part A 44:591–598CrossRef
34.
Zurück zum Zitat White JL, Czarnecki L, Tanaka H (1980) Experimental studies of the influence of particle and fiber reinforcement on the rheological properties of polymer melts. Rubber Chem Technol 53:823–835CrossRef White JL, Czarnecki L, Tanaka H (1980) Experimental studies of the influence of particle and fiber reinforcement on the rheological properties of polymer melts. Rubber Chem Technol 53:823–835CrossRef
35.
Zurück zum Zitat Czarnecki L, White JL (1980) Shear flow rheological properties, fiber damage, and mastication characteristics of aramid-, glass-, and cellulose-fiber-reinforced polystyrene melts. J Appl Polym Sci 25:1217–1244CrossRef Czarnecki L, White JL (1980) Shear flow rheological properties, fiber damage, and mastication characteristics of aramid-, glass-, and cellulose-fiber-reinforced polystyrene melts. J Appl Polym Sci 25:1217–1244CrossRef
36.
Zurück zum Zitat Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, AmsterdamCrossRef Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, AmsterdamCrossRef
37.
Zurück zum Zitat Prashantha K, Soulestin J, Lacrampe M, Krawczak P, Dupin G, Claes M (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69:1756–1763CrossRef Prashantha K, Soulestin J, Lacrampe M, Krawczak P, Dupin G, Claes M (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69:1756–1763CrossRef
38.
Zurück zum Zitat Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328CrossRef Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328CrossRef
39.
Zurück zum Zitat Ceccia S, Ferri D, Tabuani D, Maffettone PL (2008) Rheology of carbon nanofiber-reinforced polypropylene. Rheol Acta 47:425–433CrossRef Ceccia S, Ferri D, Tabuani D, Maffettone PL (2008) Rheology of carbon nanofiber-reinforced polypropylene. Rheol Acta 47:425–433CrossRef
40.
Zurück zum Zitat Chen Y, Li H (2005) Phase morphology evolution and compatibility improvement of PP/EPDM by ultrasound irradiation. Polymer 46:7707–7714CrossRef Chen Y, Li H (2005) Phase morphology evolution and compatibility improvement of PP/EPDM by ultrasound irradiation. Polymer 46:7707–7714CrossRef
41.
Zurück zum Zitat Oprea V, Simonescu C (1973) Mechonochemical reactions of PE-epsilon-block copolymerization of PE with polycaprolactam by vibratory grinding. Plaste Kayt 20:174–179 Oprea V, Simonescu C (1973) Mechonochemical reactions of PE-epsilon-block copolymerization of PE with polycaprolactam by vibratory grinding. Plaste Kayt 20:174–179
42.
Zurück zum Zitat Ezzati P, Ghasemi I, Karrabi M, Azizi H (2008) Rheological behaviour of PP/EPDM blend: the effect of compatibilization. Iran Polym J 17:669–679 Ezzati P, Ghasemi I, Karrabi M, Azizi H (2008) Rheological behaviour of PP/EPDM blend: the effect of compatibilization. Iran Polym J 17:669–679
43.
Zurück zum Zitat Li R, Yu W, Zhou C (2006) Phase behavior and its viscoelastic responses of poly (methyl methacrylate) and poly (styrene-co-maleic anhydride) blend systems. Polym Bull 56:455–466CrossRef Li R, Yu W, Zhou C (2006) Phase behavior and its viscoelastic responses of poly (methyl methacrylate) and poly (styrene-co-maleic anhydride) blend systems. Polym Bull 56:455–466CrossRef
44.
Zurück zum Zitat Li R, Yu W, Zhou C (2006) Rheological characterization of droplet-matrix versus co-continuous morphology. J Macromol Sci Part B 45:889–898CrossRef Li R, Yu W, Zhou C (2006) Rheological characterization of droplet-matrix versus co-continuous morphology. J Macromol Sci Part B 45:889–898CrossRef
45.
Zurück zum Zitat Macaubas P, Demarquette N (2001) Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer 42:2543–2554CrossRef Macaubas P, Demarquette N (2001) Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer 42:2543–2554CrossRef
46.
Zurück zum Zitat Sung Y, Han M, Hyun J, Kim W, Lee H (2003) Rheological properties and interfacial tension of polypropylene–poly (styrene-co-acrylonitrile) blend containing compatibilizer. Polymer 44:1681–1687CrossRef Sung Y, Han M, Hyun J, Kim W, Lee H (2003) Rheological properties and interfacial tension of polypropylene–poly (styrene-co-acrylonitrile) blend containing compatibilizer. Polymer 44:1681–1687CrossRef
Metadaten
Titel
Detailed dynamic rheological studies of multiwall carbon nanotube-reinforced acrylonitrile butadiene styrene composite
verfasst von
Jeevan Jyoti
Bhanu Pratap Singh
Sheetal Rajput
Vidya Nand Singh
S. R. Dhakate
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9578-8

Weitere Artikel der Ausgabe 5/2016

Journal of Materials Science 5/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.