Skip to main content
Log in

Synthesis and characterization of an antibacterial powder based on the covalent bonding of aminosilane-stabilized silver nanoparticles to a colloidal silica

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Stable dispersions of silver nanoparticles (Ag NPs) were synthesized employing glycerol as both a solvent and reducing agent, and 3-aminopropyl trimethoxysilane (APTMS) as a stabilizer. Average sizes varied between 13 and 55 nm, depending on the molar ratio of APTMS/Ag. Terminal alkoxysilanes reacted with OH groups of glycerol leading to the covalent bonding of glycerol moieties to the chain ends of the stabilizer. This produced extremely stable colloidal dispersions from which NPs could not be extracted with solvents immiscible with glycerol (as THF). Ag NPs were covalently bonded to the surface of a colloidal silica by hydrolysis/condensation of terminal Si–O–C bonds of the stabilizer with superficial SiOH bonds of silica. TEM images revealed the presence of individual NPs and small clusters of NPs attached to the silica surface. These clusters were presumably generated by intermolecular reactions among chain ends of the stabilizer producing Si–O–Si bonds. The antibacterial properties of the resulting powder were confirmed by conventional tests employing a culture of Escherichia Coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177. doi:10.1016/j.jcis.2004.02.012

    Article  Google Scholar 

  2. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76. doi:10.1016/j.biotechadv.2008.09.002

    Article  Google Scholar 

  3. Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501. doi:10.1039/c3cs60218d

    Article  Google Scholar 

  4. Vukoje ID, Džunuzović ES, Vodnik VV, Dimitrijević S, Ahrenkiel SP, Nedeljković JM (2014) Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles. J Mater Sci 49:6838–6844. doi:10.1007/s10853-014-8386-x

    Article  Google Scholar 

  5. Zhang D, Toh GH, Lin H, Chen Y (2012) In situ synthesis of silver nanoparticles on silk fabric with PNP for antibacterial finishing. J Mater Sci 47:5721–5728. doi:10.1007/s10853-012-6462-7

    Article  Google Scholar 

  6. Shinde VV, Jadhav PR, Kim JH, Patil PS (2013) One-step synthesis and characterization of anisotropic silver nanoparticles: application for enhanced antibacterial activity of natural fabric. J Mater Sci 48:8393–8401. doi:10.1007/s10583-013-7651-8

    Article  Google Scholar 

  7. Ahamed M, Alsalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clinica Chim Acta 411:1841. doi:10.1016/j.cca.2010.08.016

    Article  Google Scholar 

  8. Zhao CM, Wang WX (2010) Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ Sci Technol 44:7699. doi:10.1021/es101484s

    Article  Google Scholar 

  9. Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148. doi:10.1016/j.matchemphys.2005.04.023

    Article  Google Scholar 

  10. Nogueira AL, Machado RAF, de Souza AZ, Martinello F, Franco CV, Dutra GB (2014) Synthesis and characterization of silver nanoparticles produced with a bifunctional stabilizing agent. Ind Eng Chem Res 53:3426. doi:10.1021/ie4030903

    Article  Google Scholar 

  11. Wu KH, Chang YC, Tsai WY, Huang MY, Yang CC (2010) Effect of amine groups on the synthesis and antibacterial performance of Ag nanoparticles dispersed in aminosilanes-modified silicate. Polym Degrad Stab 95:2328. doi:10.1016/j.polymdegradstab.2010.08.025

    Article  Google Scholar 

  12. Wu KH, Liu CI, Yang CC, Wang GP, Chao CM (2011) Preparation and characterization of aminosilane-modified silicate supported with silver for antibacterial behavior. Mater Chem Phys 125:802. doi:10.1016/j.matchemphys.2010.09.055

    Article  Google Scholar 

  13. Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331:50. doi:10.1016/j.memsci.2009.01.007

    Article  Google Scholar 

  14. Fasce DP, Williams RJJ, Méchin F, Pascault JP, Llauro MF, Pétiaud R (1999) Synthesis and characterization of polyhedral silsesquioxanes bearing bulky functionalized substituents. Macromolecules 32:4757. doi:10.1021/ma981875p

    Article  Google Scholar 

  15. Fasce DP, Williams RJJ, Erra-Balsells R, Ishikawa Y, Nonami H (2001) One-step synthesis of polyhedral silsesquioxanes bearing bulky substituents: UV-MALDI-TOF and ESI-TOF mass spectrometry characterization of reaction products. Macromolecules 34:3534. doi:10.1021/ma001711k

    Article  Google Scholar 

  16. dell’Erba IE, Fasce DP, Williams RJJ, Erra-Balsells R, Fukuyama Y, Nonami H (2003) Poly(silsesquioxanes) derived from the hydrolytic condensation of organotrialkoxysilanes containing hydroxyl groups. J Organomet Chem 686:42. doi:10.1016/S0022-328X(03)00377-2

    Article  Google Scholar 

  17. dell’Erba IE, Hoppe CE, Williams RJJ (2010) Synthesis of silver nanoparticles coated with OH-functionalized organic groups: dispersion and covalent bonding in epoxy networks. Langmuir 26:2042. doi:10.1021/la902568v

    Article  Google Scholar 

  18. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978. doi:10.1103/PhysRev.56.978

    Article  Google Scholar 

  19. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst 11:102. doi:10.1107/S0021889878012844

    Article  Google Scholar 

  20. dell’Erba IE, Hoppe CE, Williams RJJ (2012) Films of covalently bonded gold nanoparticles synthesized by a sol–gel process. J Nanopart Res 14:1098. doi:10.1007/s11051-012-1098-8

    Article  Google Scholar 

Download references

Acknowledgement

The financial support from the National Research Council (CONICET), the University of Mar del Plata and the National Agency for the Promotion of Science and Technology (ANPCyT), Argentina, is gratefully acknowledged. The authors wish to thank Giovani Pavoski and Prof. Griselda Barrera Galland for the ICP measurements at the UFRGS, Porto Alegre, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. dell’Erba.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dell’Erba, I.E., Mansilla, A.Y., Hoppe, C.E. et al. Synthesis and characterization of an antibacterial powder based on the covalent bonding of aminosilane-stabilized silver nanoparticles to a colloidal silica. J Mater Sci 51, 3817–3823 (2016). https://doi.org/10.1007/s10853-015-9700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9700-y

Keywords

Navigation