Skip to main content
Erschienen in: Journal of Materials Science 23/2016

05.08.2016 | Original Paper

Highly conductive natural rubber–graphene hybrid films prepared by solution casting and in situ reduction for solvent-sensing application

verfasst von: Bin Dong, Liqun Zhang, Youping Wu

Erschienen in: Journal of Materials Science | Ausgabe 23/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-performance solvent sensors have extensive applications in many fields. In this work, we report a quite efficient method to fabricate electrically conductive natural rubber (NR)-reduced graphene oxide (RGO) hybrid films for solvent-sensing application. The RGO/NR hybrid films with three-dimensional continuous RGO networks were prepared by blending graphene oxide suspension with rubber latex, followed by solution casting and then in situ hydroiodic acid reduction. The electrical conductivity of hybrid film was as high as 49.3 S/m when filled with 5.00 vol% RGO, and the film exhibited an extremely low percolation threshold of 0.31 vol%. The solvent-sensitive properties were evaluated by detecting the variation in electrical resistance due to the swelling of NR matrix. It was noted that the RGO/NR hybrid films exhibited exceptional stimuli responses for organic solvents, however, with different sensing responses for different solvents. Due to the reconstruction of continuous RGO networks after solvent evaporation, the hybrid films performed an excellent repeatability for solvent sensitivity. Therefore, as intelligent materials, the conductive RGO/NR hybrid films have great potential applications in sensing fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
Zurück zum Zitat Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22:10464–10468CrossRef Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22:10464–10468CrossRef
3.
Zurück zum Zitat Wang J, Jia H, Tang Y, Ji D, Sun Y, Gong X, Ding L (2013) Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J Mater Sci 48:1571–1577. doi:10.1007/s10853-012-6913-1 CrossRef Wang J, Jia H, Tang Y, Ji D, Sun Y, Gong X, Ding L (2013) Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J Mater Sci 48:1571–1577. doi:10.​1007/​s10853-012-6913-1 CrossRef
4.
Zurück zum Zitat Dong B, Liu C, Zhang L, Wu Y (2015) Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites. RSC Adv 5:17140–17148CrossRef Dong B, Liu C, Zhang L, Wu Y (2015) Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites. RSC Adv 5:17140–17148CrossRef
5.
Zurück zum Zitat Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055CrossRef Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055CrossRef
6.
Zurück zum Zitat Yin B, Wang J, Jia H, He J, Zhang X, Xu Z (2016) Enhanced mechanical properties and thermal conductivity of styrene-butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. J Mater Sci 51:5724–5737. doi:10.1007/s10853-016-9874-y CrossRef Yin B, Wang J, Jia H, He J, Zhang X, Xu Z (2016) Enhanced mechanical properties and thermal conductivity of styrene-butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. J Mater Sci 51:5724–5737. doi:10.​1007/​s10853-016-9874-y CrossRef
7.
Zurück zum Zitat Hernández M, Bernal MM, Verdejo R, Ezquerra TA, López-Manchado MA (2012) Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol 73:40–46CrossRef Hernández M, Bernal MM, Verdejo R, Ezquerra TA, López-Manchado MA (2012) Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol 73:40–46CrossRef
8.
Zurück zum Zitat Razak JA, Ahmad SH, Ratnam CT, Mahamood MA, Mohamad N (2015) Effects of poly(ethyleneimine) adsorption on graphene nanoplatelets to the properties of NR/EPDM rubber blend nanocomposites. J Mater Sci 50:6365–6381. doi:10.1007/s10853-015-9188-5 CrossRef Razak JA, Ahmad SH, Ratnam CT, Mahamood MA, Mohamad N (2015) Effects of poly(ethyleneimine) adsorption on graphene nanoplatelets to the properties of NR/EPDM rubber blend nanocomposites. J Mater Sci 50:6365–6381. doi:10.​1007/​s10853-015-9188-5 CrossRef
10.
Zurück zum Zitat Ma WS, Wu L, Yang F, Wang SF (2014) Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J Mater Sci 49:562–571. doi:10.1007/s10853-013-7736-4 CrossRef Ma WS, Wu L, Yang F, Wang SF (2014) Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J Mater Sci 49:562–571. doi:10.​1007/​s10853-013-7736-4 CrossRef
11.
Zurück zum Zitat Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
12.
Zurück zum Zitat Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408CrossRef Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408CrossRef
13.
Zurück zum Zitat Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218CrossRef Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218CrossRef
14.
Zurück zum Zitat Sun J, Teng X, Yang J, Bi H (2013) One pot synthesis of a highly water-dispersible hybrid glucose carbides and reduced graphene oxide material with superior electrical capacitance. J Mater Sci 48:8277–8286. doi:10.1007/s10853-013-7640-y CrossRef Sun J, Teng X, Yang J, Bi H (2013) One pot synthesis of a highly water-dispersible hybrid glucose carbides and reduced graphene oxide material with superior electrical capacitance. J Mater Sci 48:8277–8286. doi:10.​1007/​s10853-013-7640-y CrossRef
15.
Zurück zum Zitat Tran DNH, Kabiri S, Losic D (2014) A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon 76:193–202CrossRef Tran DNH, Kabiri S, Losic D (2014) A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon 76:193–202CrossRef
16.
Zurück zum Zitat Hu J, Jia X, Li C, Ma Z, Zhang G, Sheng W, Zhang X, Wei Z (2014) Effect of interfacial interaction between graphene oxide derivatives and poly(vinyl chloride) upon the mechanical properties of their nanocomposites. J Mater Sci 49:2943–2951. doi:10.1007/s10853-013-8006-1 CrossRef Hu J, Jia X, Li C, Ma Z, Zhang G, Sheng W, Zhang X, Wei Z (2014) Effect of interfacial interaction between graphene oxide derivatives and poly(vinyl chloride) upon the mechanical properties of their nanocomposites. J Mater Sci 49:2943–2951. doi:10.​1007/​s10853-013-8006-1 CrossRef
17.
Zurück zum Zitat Pei S, Zhao J, Du J, Ren W, Cheng HM (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474CrossRef Pei S, Zhao J, Du J, Ren W, Cheng HM (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474CrossRef
18.
Zurück zum Zitat Li YQ, Yu T, Yang TY, Zheng LX, Liao K (2012) Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv Mater 24:3426–3431CrossRef Li YQ, Yu T, Yang TY, Zheng LX, Liao K (2012) Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv Mater 24:3426–3431CrossRef
19.
Zurück zum Zitat Lian M, Fan J, Shi Z, Zhang S, Li H, Yin J (2015) Gelatin-assisted fabrication of graphene-based nacre with high strength, toughness, and electrical conductivity. Carbon 89:279–289CrossRef Lian M, Fan J, Shi Z, Zhang S, Li H, Yin J (2015) Gelatin-assisted fabrication of graphene-based nacre with high strength, toughness, and electrical conductivity. Carbon 89:279–289CrossRef
20.
Zurück zum Zitat Tian M, Ma Q, Li X, Zhang L, Nishi T, Ning N (2014) High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR. J Mater Chem A 2:11144–11154CrossRef Tian M, Ma Q, Li X, Zhang L, Nishi T, Ning N (2014) High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR. J Mater Chem A 2:11144–11154CrossRef
21.
Zurück zum Zitat Liu W, Li H, Zeng Q, Duan H, Guo Y, Liu X, Sun C, Liu H (2015) Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J Mater Chem A 3:3739–3747CrossRef Liu W, Li H, Zeng Q, Duan H, Guo Y, Liu X, Sun C, Liu H (2015) Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J Mater Chem A 3:3739–3747CrossRef
22.
Zurück zum Zitat Ramuz M, Tee BCK, Tok JBH, Bao Z (2012) Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24:3223–3227CrossRef Ramuz M, Tee BCK, Tok JBH, Bao Z (2012) Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24:3223–3227CrossRef
23.
Zurück zum Zitat Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163CrossRef Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163CrossRef
24.
Zurück zum Zitat Dong B, Wu SZ, Zhang LQ, Wu YP (2016) High performance natural rubber composites with well-organized interconnected graphene networks for strain-sensing application. Ind Eng Chem Res 55:4919–4929CrossRef Dong B, Wu SZ, Zhang LQ, Wu YP (2016) High performance natural rubber composites with well-organized interconnected graphene networks for strain-sensing application. Ind Eng Chem Res 55:4919–4929CrossRef
25.
Zurück zum Zitat Luo Y, Zhao P, Yang Q, He D, Kong L, Peng Z (2014) Fabrication of conductive elastic nanocomposites via framing intact interconnected graphene networks. Compos Sci Technol 100:143–151CrossRef Luo Y, Zhao P, Yang Q, He D, Kong L, Peng Z (2014) Fabrication of conductive elastic nanocomposites via framing intact interconnected graphene networks. Compos Sci Technol 100:143–151CrossRef
26.
Zurück zum Zitat Jiang Z, Li J, Aslan H, Li Q, Li Y, Chen M, Huang Y, Froning JP, Otyepka M, Zbořil R, Besenbacher F, Dong M (2014) A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J Mater Chem A 2:6714–6717CrossRef Jiang Z, Li J, Aslan H, Li Q, Li Y, Chen M, Huang Y, Froning JP, Otyepka M, Zbořil R, Besenbacher F, Dong M (2014) A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J Mater Chem A 2:6714–6717CrossRef
27.
Zurück zum Zitat Knite M, Ozols K, Sakale G, Teteris V (2007) Polyisoprene and high structure carbon nanoparticle composite for sensing organic solvent vapours. Sens Actuators B 126:209–213CrossRef Knite M, Ozols K, Sakale G, Teteris V (2007) Polyisoprene and high structure carbon nanoparticle composite for sensing organic solvent vapours. Sens Actuators B 126:209–213CrossRef
28.
Zurück zum Zitat Pötschke P, Andres T, Villmow T, Pegel S, Brünig H, Kobashi K, Fischer D, Häussler L (2010) Liquid sensing properties of fibres prepared by melt spinning from poly (lactic acid) containing multi-walled carbon nanotubes. Compos Sci Technol 70:343–349CrossRef Pötschke P, Andres T, Villmow T, Pegel S, Brünig H, Kobashi K, Fischer D, Häussler L (2010) Liquid sensing properties of fibres prepared by melt spinning from poly (lactic acid) containing multi-walled carbon nanotubes. Compos Sci Technol 70:343–349CrossRef
29.
Zurück zum Zitat Wu X, Lu C, Han Y, Zhou Z, Yuan G, Zhang X (2016) Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos Sci Technol 124:44–51CrossRef Wu X, Lu C, Han Y, Zhou Z, Yuan G, Zhang X (2016) Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos Sci Technol 124:44–51CrossRef
30.
Zurück zum Zitat Hou Y, Wang D, Zhang XM, Zhao H, Zha JW, Dang ZM (2013) Positive piezoresistive behaviour of electrically conductive alkyl-functionalized graphene/polydimethylsilicone nanocomposites. J Mater Chem C 1:515–521CrossRef Hou Y, Wang D, Zhang XM, Zhao H, Zha JW, Dang ZM (2013) Positive piezoresistive behaviour of electrically conductive alkyl-functionalized graphene/polydimethylsilicone nanocomposites. J Mater Chem C 1:515–521CrossRef
31.
Zurück zum Zitat Harris KD, Elias AL, Chung HJ (2016) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51:2771–2805. doi:10.1007/s10853-015-9643-3 CrossRef Harris KD, Elias AL, Chung HJ (2016) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51:2771–2805. doi:10.​1007/​s10853-015-9643-3 CrossRef
32.
Zurück zum Zitat Wang S, Zhang X, Wu X, Lu C (2016) Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter 12:845–852CrossRef Wang S, Zhang X, Wu X, Lu C (2016) Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter 12:845–852CrossRef
33.
Zurück zum Zitat Boland CS, Khan U, Backes C, O’Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8:8819–8830CrossRef Boland CS, Khan U, Backes C, O’Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8:8819–8830CrossRef
34.
Zurück zum Zitat Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353CrossRef Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353CrossRef
35.
Zurück zum Zitat Zhou Z, Zhang X, Wu X, Lu C (2016) Self-stabilized polyaniline@graphene aqueous colloids for the construction of assembled conductive network in rubber matrix and its chemical sensing application. Compos Sci Technol 125:1–8CrossRef Zhou Z, Zhang X, Wu X, Lu C (2016) Self-stabilized polyaniline@graphene aqueous colloids for the construction of assembled conductive network in rubber matrix and its chemical sensing application. Compos Sci Technol 125:1–8CrossRef
36.
Zurück zum Zitat Cao J, Zhang X, Wu X, Wang S, Lu C (2016) Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Carbohydr Polym 140:88–95CrossRef Cao J, Zhang X, Wu X, Wang S, Lu C (2016) Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Carbohydr Polym 140:88–95CrossRef
37.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
38.
Zurück zum Zitat Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRef Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRef
39.
Zurück zum Zitat Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef
40.
Zurück zum Zitat He L, Tjong SC (2011) Nonlinear electrical conduction in percolating systems induced by internal field emission. Synth Met 161:540–543CrossRef He L, Tjong SC (2011) Nonlinear electrical conduction in percolating systems induced by internal field emission. Synth Met 161:540–543CrossRef
41.
Zurück zum Zitat Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE (1997) Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388:257–259CrossRef Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE (1997) Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388:257–259CrossRef
42.
Zurück zum Zitat Kakaei K, Balavandi A (2016) Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 463:46–54CrossRef Kakaei K, Balavandi A (2016) Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 463:46–54CrossRef
43.
Zurück zum Zitat Medalia AI (1986) Electrical conduction in carbon black composites. Rubber Chem Technol 59:432–454CrossRef Medalia AI (1986) Electrical conduction in carbon black composites. Rubber Chem Technol 59:432–454CrossRef
44.
Zurück zum Zitat Shen JT, Buschhorn ST, De Hosson JTM, Schulte K, Fiedler B (2015) Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites. Compos Sci Technol 115:1–8CrossRef Shen JT, Buschhorn ST, De Hosson JTM, Schulte K, Fiedler B (2015) Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites. Compos Sci Technol 115:1–8CrossRef
45.
Zurück zum Zitat Matos CF, Galembeck F, Zarbin AJG (2014) Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78:469–479CrossRef Matos CF, Galembeck F, Zarbin AJG (2014) Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78:469–479CrossRef
46.
Zurück zum Zitat Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef
47.
Zurück zum Zitat Benoit JM, Corraze B, Chauvet O (2002) Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites. Phys Rev B 65:241405CrossRef Benoit JM, Corraze B, Chauvet O (2002) Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites. Phys Rev B 65:241405CrossRef
48.
Zurück zum Zitat Garboczi EJ, Douglas JF (1996) Intrinsic conductivity of objects having arbitrary shape and conductivity. Phys Rev E 53:6169CrossRef Garboczi EJ, Douglas JF (1996) Intrinsic conductivity of objects having arbitrary shape and conductivity. Phys Rev E 53:6169CrossRef
49.
Zurück zum Zitat Levon K, Margolina A, Patashinsky AZ (1993) Multiple percolation in conducting polymer blends. Macromolecules 26:4061–4063CrossRef Levon K, Margolina A, Patashinsky AZ (1993) Multiple percolation in conducting polymer blends. Macromolecules 26:4061–4063CrossRef
50.
Zurück zum Zitat He C, She X, Peng Z, Zhong J, Liao S, Gong W, Liao J, Kong L (2015) Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies. Phys Chem Chem Phys 17:12175–12184CrossRef He C, She X, Peng Z, Zhong J, Liao S, Gong W, Liao J, Kong L (2015) Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies. Phys Chem Chem Phys 17:12175–12184CrossRef
Metadaten
Titel
Highly conductive natural rubber–graphene hybrid films prepared by solution casting and in situ reduction for solvent-sensing application
verfasst von
Bin Dong
Liqun Zhang
Youping Wu
Publikationsdatum
05.08.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0276-y

Weitere Artikel der Ausgabe 23/2016

Journal of Materials Science 23/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.