Skip to main content
Log in

Ordered porous Mn3O4@N-doped carbon/graphene hybrids derived from metal–organic frameworks for supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An ordered porous Mn3O4@N-doped carbon/graphene (MCG) composite has been synthesized through a facile carbonization of Mn-based metal–organic frameworks (Mn-MOFs) using the poly(styrene-co-AA) spheres as the template. Because of the periodic arrangement of metal nodes and organic ligands in the Mn-MOFs, the Mn3O4 nanoparticles with an average diameter of 7 nm are uniformly distributed and the carbon is formed in situ in the MCG composite. The MCG exhibits a specific surface area of 326 m2 g−1 with a total pore volume of 1.02 cm3 g−1, which is much higher than that of the Mn3O4-based composites reported to date. In addition, the MCG displays excellent electrochemical performances in an aqueous 1 M Na2SO4 electrolyte with a maximum specific capacitance of 456 F g−1 at 1 A g−1 and 246 F g−1 at 20 A g−1. The MCG also owns a good cycling stability with 98.1 % of the initial capacitance remaining after 2000 cycles at 5 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697. doi:10.1039/c0cs00127a

    Article  Google Scholar 

  2. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25:5336. doi:10.1002/adma.201301932

    Article  Google Scholar 

  3. Zhang C, Hatzell KB, Boota M et al (2014) Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. Carbon 77:155. doi:10.1016/j.carbon.2014.05.017

    Article  Google Scholar 

  4. Mai Y, Zhang F, Feng X (2014) Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage. Nanoscale 6:106. doi:10.1039/c3nr04791a

    Article  Google Scholar 

  5. Wu Y, Liu S, Wang H, Wang X, Zhang X, Jin G (2013) A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim Acta 90:210. doi:10.1016/j.electacta.2012.11.124

    Article  Google Scholar 

  6. Zhao K, Liu S, Wu Y, Lv K, Yuan H, He Z (2015) Long cycling life supercapacitors electrode materials: ultrathin manganese dioxide nanoscrolls adhered to graphene by electrostatic self-assembly. Electrochim Acta 174:1234. doi:10.1016/j.electacta.2015.06.132

    Article  Google Scholar 

  7. Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468. doi:10.1039/c3cs60472a

    Article  Google Scholar 

  8. Sun J-K, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7:2071. doi:10.1039/c4ee00517a

    Article  Google Scholar 

  9. Díaz R, Orcajo MG, Botas JA, Calleja G, Palma J (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126. doi:10.1016/j.matlet.2011.10.046

    Article  Google Scholar 

  10. Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci 5:9269. doi:10.1039/c2ee22989g

    Article  Google Scholar 

  11. Liu B, Shioyama H, Jiang H, Zhang X, Xu Q (2010) Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48:456. doi:10.1016/j.carbon.2009.09.061

    Article  Google Scholar 

  12. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127. doi:10.1039/C3CS00009E

    Article  Google Scholar 

  13. Amali AJ, Sun J-K, Xu Q (2014) From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem Commun 50:1519. doi:10.1039/C3CC48112C

    Article  Google Scholar 

  14. Chaikittisilp W, Hu M, Wang H et al (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259. doi:10.1039/C2CC33433J

    Article  Google Scholar 

  15. Zhao Y, Liu M, Deng X et al (2015) Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode. Electrochim Acta 153:448. doi:10.1016/j.electacta.2014.11.173

    Article  Google Scholar 

  16. Zhong S, Zhan C, Cao D (2015) Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85:51. doi:10.1016/j.carbon.2014.12.064

    Article  Google Scholar 

  17. Wu R, Wang DP, Han J et al (2015) A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks. Nanoscale 7:965. doi:10.1039/c4nr05135a

    Article  Google Scholar 

  18. Jeon J-W, Sharma R, Meduri P et al (2014) In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl Mater Interfaces 6:7214. doi:10.1021/am500339x

    Article  Google Scholar 

  19. Torad NL, Salunkhe RR, Li Y et al (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem Eur J 20:7895. doi:10.1002/chem.201400089

    Article  Google Scholar 

  20. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250. doi:10.1039/c3ee43525c

    Article  Google Scholar 

  21. Xi K, Cao S, Peng X, Ducati C, Kumar RV, Cheetham AK (2013) Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem Commun 49:2192. doi:10.1039/c3cc38009b

    Article  Google Scholar 

  22. Yan X, Li X, Yan Z, Komarneni S (2014) Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Appl Surface Sci 308:306. doi:10.1016/j.apsusc.2014.04.160

    Article  Google Scholar 

  23. Zhang Y-Z, Wang Y, Xie Y-L et al (2014) Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6:14354. doi:10.1039/C4NR04782F

    Article  Google Scholar 

  24. Hou L, Lian L, Zhang L, Pang G, Yuan C, Zhang X (2015) Self-sacrifice template fabrication of hierarchical mesoporous bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv Funct Mater 25:238. doi:10.1002/adfm.201402827

    Article  Google Scholar 

  25. Banerjee PC, Lobo DE, Middag R, Ng WK, Shaibani ME, Majumder M (2015) electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. ACS Appl Mater Interfaces 7:3655. doi:10.1021/am508119c

    Article  Google Scholar 

  26. Peng L, Zhang J, Xue Z, Han B, Li J, Yang G (2013) Large-pore mesoporous Mn3O4 crystals derived from metal-organic frameworks. Chem Commun 49:11695. doi:10.1039/C3CC46853D

    Article  Google Scholar 

  27. Bai Z, Zhang Y, Zhang Y, Guo C, Tang B, Sun D (2015) MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery. J Mater Chem A 3:5266. doi:10.1039/C4TA06292B

    Article  Google Scholar 

  28. Khan IA, Badshah A, Nadeem MA, Haider N, Nadeem MA (2014) A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. Int J Hydrogen Energy 39:19609. doi:10.1016/j.ijhydene.2014.09.106

    Article  Google Scholar 

  29. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136:13925. doi:10.1021/ja5082553

    Article  Google Scholar 

  30. Xia W, Zou R, An L, Xia D, Guo S (2015) A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ Sci 8:568. doi:10.1039/C4EE02281E

    Article  Google Scholar 

  31. Liu L, Guo H, Liu J et al (2014) Self-assembled hierarchical yolk-shell structured NiO@C from metal-organic frameworks with outstanding performance for lithium storage. Chem Commun 50:9485. doi:10.1039/C4CC03807J

    Article  Google Scholar 

  32. Meng W, Chen W, Zhao L et al (2014) Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8:133. doi:10.1016/j.nanoen.2014.06.007

    Article  Google Scholar 

  33. Yeager M, Du W, Si R, Su D, Marinković N, Teng X (2012) Highly efficient K0.15MnO2 birnessite nanosheets for stable pseudocapacitive cathodes. J Phys Chem C 116:20173. doi:10.1021/jp304809r

    Article  Google Scholar 

  34. Tsumura T, Tsumori K, Shimizu G, Toyoda M (2012) Electrochemical properties of spinel-type manganese oxide/porous carbon nanocomposite powders in 1 M KOH aqueous solution. J Phys Chem Solids 73:237. doi:10.1016/j.jpcs.2011.10.036

    Article  Google Scholar 

  35. Wang K, Shi X, Lu A et al (2015) High nitrogen-doped carbon/Mn3O4 hybrids synthesized from nitrogen-rich coordination polymer particles as supercapacitor electrodes. Dalton Trans 44:151. doi:10.1039/c4dt02456g

    Article  Google Scholar 

  36. Lee HJ, Choi S, Oh M (2014) Well-dispersed hollow porous carbon spheres synthesized by direct pyrolysis of core-shell type metal-organic frameworks and their sorption properties. Chem Commun 50:4492. doi:10.1039/c4cc00943f

    Article  Google Scholar 

  37. H-x Zhong J, Wang Y-w Zhang et al (2014) ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew Chem Int Ed 53:14235. doi:10.1002/anie.201408990

    Article  Google Scholar 

  38. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806. doi:10.1021/nn1006368

    Article  Google Scholar 

  39. Li L-J, Li Y (2004) Hydrothermal synthesis and crystal structure of a novel 2-D coordination polymer [Mn2(pdc)2(H2O)3]n2nH2O (pdc = pyridine-2,3-dicarboxylate). J Mol Struct 694:199. doi:10.1016/j.molstruc.2004.03.029

    Article  Google Scholar 

  40. Gao F, Qu J, Zhao Z, Zhou Q, Li B, Qiu J (2014) A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon 80:640. doi:10.1016/j.carbon.2014.09.008

    Article  Google Scholar 

  41. Jeon JW, Sharma R, Meduri P et al (2014) In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl Mater Interfaces 6:7214. doi:10.1021/am500339x

    Article  Google Scholar 

  42. Lee JH, Sa YJ, Kim TK, Moon HR, Joo SH (2014) A transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties. J Mater Chem A 2:10435. doi:10.1039/C4TA01272K

    Article  Google Scholar 

  43. Subramani K, Jeyakumar D, Sathish M (2014) Manganese hexacyanoferrate derived Mn3O4 nanocubes-reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors. Phys Chem Chem Phys 16:4952. doi:10.1039/c3cp54788d

    Article  Google Scholar 

  44. Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H (2014) Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew Chem Int Ed 53:1404. doi:10.1002/anie.201308013

    Article  Google Scholar 

  45. Yang F, Zhao M, Sun Q, Qiao Y (2015) A novel hydrothermal synthesis and characterisation of porous Mn3O4 for supercapacitors with high rate capability. RSC Adv 5:9843. doi:10.1039/C4RA10175H

    Article  Google Scholar 

  46. Xiao Y, Cao Y, Gong Y et al (2014) Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites. J Power Sources 246:926. doi:10.1016/j.jpowsour.2013.07.118

    Article  Google Scholar 

  47. Jiangying Q, Feng G, Quan Z et al (2013) Highly atom-economic synthesis of graphene/Mn(3)O(4) hybrid composites for electrochemical supercapacitors. Nanoscale 5:2999. doi:10.1039/c3nr33700f

    Article  Google Scholar 

  48. Dong R, Ye Q, Kuang L et al (2013) Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl Mater Interfaces 5:9508. doi:10.1021/am402257y

    Article  Google Scholar 

  49. Gund GS, Dubal DP, Patil BH, Shinde SS, Lokhande CD (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205. doi:10.1016/j.electacta.2012.12.120

    Article  Google Scholar 

  50. Li M, Xu W, Wang W, Liu Y, Cui B, Guo X (2014) Facile synthesis of specific FeMnO3 hollow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J Power Sources 248:465. doi:10.1016/j.jpowsour.2013.09.075

    Article  Google Scholar 

  51. Yang F, Zhao M, Sun Q, Qiao Y (2015) A novel hydrothermal synthesis and characterisation of porous Mn3O4 for supercapacitors with high rate capability. RSC Adv 5:9843. doi:10.1039/C4RA10175H

    Article  Google Scholar 

  52. Wang K, Ma X, Zhang Z, Zheng M, Geng Z, Wang Z (2013) Indirect transformation of coordination-polymer particles into magnetic carbon-coated Mn3O4 (Mn3O4@C) nanowires for supercapacitor electrodes with good cycling performance. Chem Eur J 19:7084. doi:10.1002/chem.201300188

    Article  Google Scholar 

  53. Liu Y, Wang W, Wang Y, Ying Y, Sun L, Peng X (2014) Binder-free three-dimensional porous Mn3O4 nanorods/reduced graphene oxide paper-like electrodes for electrochemical energy storage. RSC Adv 4:16374. doi:10.1039/c4ra01395f

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51372278, 21303270).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suqin Liu or Zhen He.

Additional information

Kuangmin Zhao and Kezhou Lyu contributed equal to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Lyu, K., Liu, S. et al. Ordered porous Mn3O4@N-doped carbon/graphene hybrids derived from metal–organic frameworks for supercapacitor electrodes. J Mater Sci 52, 446–457 (2017). https://doi.org/10.1007/s10853-016-0344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0344-3

Keywords

Navigation