Skip to main content
Log in

Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Short (<2.5 mm) cellulose fiber–silica composite aerogels were synthesized by dispersing cellulose fibers in polyethoxydisiloxane-based sol. After in situ gelation, silica phase was hydrophobized with hexamethyldisilazane, and the composites were dried either at ambient pressure or with supercritical (sc) CO2. Fiber concentration was varied from 0 to 25 wt% (corresponding to 0–2.1 vol%) of the final dried composite. Preformed cellulosic fiber network preserved the monolithic shape of the silica-based composites during ambient drying. At room conditions, thermal conductivities were 0.015 ± 0.001 W/(m K) for sc-dried aerogels and 0.017 ± 0.001 W/(m K) for their ambient-dried counterparts. Materials dried with either method exhibited large specific surface areas, from 570 to 730 m2/g, and SEM analysis did not show significant differences in the global structure of the silica network. Composite aerogels were hydrophobic with water contact angles around 138°. Based on this proof of concept, the same approach was used with a variety of natural and recycled cellulosic fibers also resulting in silica-based monoliths with low thermal conductivities in the 0.016–0.023 W/(m K) range, all produced via ambient drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342

    Article  Google Scholar 

  2. Fricke J, Lu X, Wang P, Büttner D, Heinemann U (1992) Optimization of monolithic silica aerogel insulants. Int J Heat Mass Tran 35(9):2305–2309

    Article  Google Scholar 

  3. Pierre AC, Rigacci A (2011) SiO2 aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York

    Google Scholar 

  4. Baetens R, Jelle BP, Gustavsen A (2001) Aerogel insulation for building applications: a state-of-the-art review. Energ Build 43:761–769

    Article  Google Scholar 

  5. Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol Gel Sci Technol 63:315–339

    Article  Google Scholar 

  6. Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energ Build 43:2549–2563

    Article  Google Scholar 

  7. Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energy Rev 34:273–299

    Article  Google Scholar 

  8. Zeng SQ, Hunt AJ, Cao W, Greif R (1994) Pore size distribution and apparent gas thermal conductivity of silica aerogel. J Heat Trans-T ASME 116:756–759

    Article  Google Scholar 

  9. Notario B, Pinto J, Solorzano E, de Saja JA, Dumon M, Rodriguez-Perez MA (2015) Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer 56:57–67

    Article  Google Scholar 

  10. Caps R, Fricke J (1985) Determination of the radiative heat transfer in transparent silica aerogel. Int J Sol Energ 3(1):13–18

    Article  Google Scholar 

  11. Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Drying of silica gels to obtain aerogels: phenomenology and basic techniques. Dry Technol 21(4):593–628

    Article  Google Scholar 

  12. Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Matter Lett 3(9–10):363–367

    Article  Google Scholar 

  13. Smith DM, Deshpande R, Brinke CJ (1992) Preparation of low-density aerogels at ambient pressure. MRS Symp Proc 271:567–572

    Article  Google Scholar 

  14. Schwertfeger F, Frank D, Schmidt M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non Cryst Solids 225:24–29

    Article  Google Scholar 

  15. Wang LJ, Zhao SY, Yang M (2009) Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. J Mater Chem Phys 113:485–490

    Article  Google Scholar 

  16. Mahadik DB, Rao AV, Kumar R, Ingale SV, Wagh PB, Gupta SC (2012) Reduction of processing time by mechanical shaking of ambient pressure dried TEOS based silica aerogel granules. J Porous Mater 19:87–94

    Article  Google Scholar 

  17. Fesmire JE (2006) Aerogel insulation systems for space launch applications. Cryogenics 46:111–117

    Article  Google Scholar 

  18. Bardy ER, Mollendorf JC, Pendergast DR (2007) Thermal conductivity and compressive strain of aerogel insulation blankets under applied hydrostatic pressure. J Heat Trans T ASME 129:232–235

    Article  Google Scholar 

  19. Hayase G, Kanamori K, Maeno A, Kaji H, Nakanishi K (2016) Dynamic spring-back behavior in evaporative drying of polymethylsilsesquioxane monolithic gels for low-density transparent thermal superinsulators. J Non Cryst Solids 434:115–119

    Article  Google Scholar 

  20. Einarsrud MA (1998) Light gels by conventional drying. J Non Cryst Solids 225:1–7

    Article  Google Scholar 

  21. Maleki H, Duraes L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74

    Article  Google Scholar 

  22. Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization. ACS Appl Mater Interfaces 1(11):2491–2501

    Article  Google Scholar 

  23. Li X, Wang Q, Li H, Ji H, Sun X, He J (2013) Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. J Sol Gel Sci Technol 67:646–653

    Article  Google Scholar 

  24. Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2013) Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity. ACS Appl Mater Interfaces 6:9466–9471

    Article  Google Scholar 

  25. Zhao S, Zhang Z, Sèbe G, Wu R, Virtudazo RVR, Tingaut P, Koebel M (2015) Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv Funct Mater 25(15):2326–2334

    Article  Google Scholar 

  26. Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohyd Polym 147:89–96

    Article  Google Scholar 

  27. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364

    Article  Google Scholar 

  28. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym 86:1–18

    Article  Google Scholar 

  29. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35:371–376

    Article  Google Scholar 

  30. Wong JCW, Kaymak H, Tingaut P, Brunner S, Koebel MM (2015) Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Micropor Mesopor Mat 217:150–158

    Article  Google Scholar 

  31. Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F (2013) Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by non-supercritical drying process. J Mater Chem A 1:7963–7970

    Article  Google Scholar 

  32. Zhao S, Malfait WJ, Demilecamps A, Zhang Y, Brunner S, Huber L, Tingaut P, Rigacci A, Budtova T, Koebel MM (2015) Strong, thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin. Angew Chem Int Ed 54:14282–14286

    Article  Google Scholar 

  33. Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose—silica aerogels. Carbohyd Polym 122:293–300

    Article  Google Scholar 

  34. Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6(4):22–29

    Article  Google Scholar 

  35. Masmoudi Y, Rigacci A, Ilbizian P, Cauneau F, Achard P (2006) Diffusion during the supercritical drying of silica gels. Dry Technol 24(9):1121–1125

    Article  Google Scholar 

  36. Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15(6):2188–2195

    Article  Google Scholar 

  37. Yokogawa H, Yokoyama M (1995) Hydrophobic silica aerogels. J Non Cryst Solids 186:23–29

    Article  Google Scholar 

  38. Diaz JA, Ye Z, Wu X, Moore AL, Moon RJ, Martini A, Boday DJ, Youngblood JP (2014) Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. Biomacromolecules 15:4096–4101

    Article  Google Scholar 

  39. Gupta M, Yang J, Roy C (2003) Specific heat and thermal conductivity of softwood bark and softwood char particles. Fuel 82:919–927

    Article  Google Scholar 

  40. Sekino N (2016) Density dependence in the thermal conductivity of cellulose fiber mats and wood shavings mats: investigation of the apparent thermal conductivity of coarse pores. J Wood Sci 62:20–26

    Article  Google Scholar 

  41. Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, Cambridge

    Google Scholar 

  42. Li S, Lyons-Hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817

    Article  Google Scholar 

  43. Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107

    Article  Google Scholar 

  44. Rao AP, Rao AV, Pajonk GM, Shewale PM (2007) Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor. J Mater Sci 42:8418–8425. doi:10.1007/s10853-007-1788-2

    Article  Google Scholar 

Download references

Acknowledgements

The French Agency for Environment and Energy Management (ADEME) is acknowledged for financial support. The authors are also very grateful to Lenzing, Stora Enso, and Aerocycle for providing fibers, pulps, and recycled fiber, respectively, as well as Enersens for providing PEDS solutions. The authors thank Pierre Ilbizian (MINES ParisTech–PERSEE) for sc CO2 drying, Julien Jaxel (MINES ParisTech–CEMEF) for pulp fiber preparation and TGA analysis, university of Nice for allowing us to perform TGA experiments, and Suzanne Jacomet (MINES ParisTech–CEMEF) for SEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana Budtova or Arnaud Rigacci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The online version of this article (doi:10.1007/s10853-016-0514-3) contains supplementary material, which is available to authorized users.

10853_2016_514_MOESM1_ESM.mp4

Supplementary material 1 (MP4 5247 kb)

Supplementary material 2 (DOCX 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markevicius, G., Ladj, R., Niemeyer, P. et al. Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers. J Mater Sci 52, 2210–2221 (2017). https://doi.org/10.1007/s10853-016-0514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0514-3

Keywords

Navigation