Skip to main content
Erschienen in: Journal of Materials Science 4/2017

24.10.2016 | Original Paper

Core–shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries

verfasst von: Yaohui Qu, Yimin Deng, Qiang Li, Zhian Zhang, Fanyan Zeng, Yong Yang, Keng Xu

Erschienen in: Journal of Materials Science | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Core–shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) composite materials were prepared by carbonization of HCNF@polyaniline. The HCNF@NPC composite materials are applied to the anode for sodium-ion batteries, showing a superior reversible discharge capacity of 182 mAh g−1 after 200 cycles at 50 mA g−1. Moreover, excellent long-term cycling stability (>2500 cycles) is also obtained even at 500 mA g−1. The results indicate that the HCNF@NPC composite electrode shows outstanding electrochemical performance. The excellent performance of HCNF@NPC composite electrode may attribute to the synergetic effect between HCNF core and NPC shell layer, and the HCNF core can provide a firm hollow carbon matrix to stabilize the electrode structure, and the NPC shell layer can improve the capacity effectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tarascon J, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef Tarascon J, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef
2.
Zurück zum Zitat Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184CrossRef Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184CrossRef
3.
Zurück zum Zitat Whittingham M (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302CrossRef Whittingham M (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302CrossRef
4.
Zurück zum Zitat Slater M, Kim D, Lee E, Johnson C (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958CrossRef Slater M, Kim D, Lee E, Johnson C (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958CrossRef
5.
Zurück zum Zitat Kim S, Seo D, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721CrossRef Kim S, Seo D, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721CrossRef
6.
Zurück zum Zitat Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517CrossRef Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517CrossRef
7.
Zurück zum Zitat Stevens D, Dahn J (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148(8):A803–A811CrossRef Stevens D, Dahn J (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148(8):A803–A811CrossRef
8.
Zurück zum Zitat Wang L, Lu Y, Liu J, Xu M, Cheng J (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem 52(7):1964–1967CrossRef Wang L, Lu Y, Liu J, Xu M, Cheng J (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem 52(7):1964–1967CrossRef
9.
Zurück zum Zitat Luo W, Schardt J, Bommier C, Wang B, Razink J (2013) Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A 1:10662–10666CrossRef Luo W, Schardt J, Bommier C, Wang B, Razink J (2013) Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J Mater Chem A 1:10662–10666CrossRef
10.
Zurück zum Zitat Ponrouch A, Goñi A, Palacín M (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88CrossRef Ponrouch A, Goñi A, Palacín M (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88CrossRef
11.
Zurück zum Zitat Ding J, Wang H, Li Z, Kohandehghan A, Cui K (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015CrossRef Ding J, Wang H, Li Z, Kohandehghan A, Cui K (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015CrossRef
12.
Zurück zum Zitat Li W, Zeng L, Yang Z, Gu L, Wang J (2014) Free-standing and binder free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 6:693–698CrossRef Li W, Zeng L, Yang Z, Gu L, Wang J (2014) Free-standing and binder free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 6:693–698CrossRef
13.
Zurück zum Zitat Song H, Li N, Cui H, Wang C (2014) Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy 4:81–87CrossRef Song H, Li N, Cui H, Wang C (2014) Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy 4:81–87CrossRef
15.
Zurück zum Zitat Luo X, Yang C, Peng Y, Pu N, Ger M (2015) Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J Mater Chem A 3:10320–10326CrossRef Luo X, Yang C, Peng Y, Pu N, Ger M (2015) Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J Mater Chem A 3:10320–10326CrossRef
16.
Zurück zum Zitat Wang Z, Qie L, Yuan L, Zhang W, Hu X (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334CrossRef Wang Z, Qie L, Yuan L, Zhang W, Hu X (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334CrossRef
17.
Zurück zum Zitat Wang H, Wu Z, Meng F, Ma D, Huang X (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6(1):56–60CrossRef Wang H, Wu Z, Meng F, Ma D, Huang X (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6(1):56–60CrossRef
18.
Zurück zum Zitat Shin W, Jeong H, Kim B, Kang J, Choi J (2012) Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett 12(5):2283–2288CrossRef Shin W, Jeong H, Kim B, Kang J, Choi J (2012) Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett 12(5):2283–2288CrossRef
19.
Zurück zum Zitat Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4(5):1592–1605CrossRef Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4(5):1592–1605CrossRef
20.
Zurück zum Zitat Li Z, Xu Z, Tan X, Wang H, Holt C (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6(3):871–878CrossRef Li Z, Xu Z, Tan X, Wang H, Holt C (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6(3):871–878CrossRef
21.
Zurück zum Zitat Fu L, Tang K, Song K, Aken P, Yu Y (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6(3):1384–1389CrossRef Fu L, Tang K, Song K, Aken P, Yu Y (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6(3):1384–1389CrossRef
22.
Zurück zum Zitat Li Q, Zhang Z, Guo Z, Lai Y, Zhang K (2014) Improved cyclability of lithium-sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@nitrogen-doped porous carbon core-shell composite. Carbon 78:1–9CrossRef Li Q, Zhang Z, Guo Z, Lai Y, Zhang K (2014) Improved cyclability of lithium-sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@nitrogen-doped porous carbon core-shell composite. Carbon 78:1–9CrossRef
23.
Zurück zum Zitat Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai Y, Huang H (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283CrossRef Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai Y, Huang H (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283CrossRef
24.
Zurück zum Zitat Chen Y, Li X, Zhou X, Yao H, Huang H, Mai Y, Zhou L (2014) Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials. Energy Environ Sci 7:2689–2696CrossRef Chen Y, Li X, Zhou X, Yao H, Huang H, Mai Y, Zhou L (2014) Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials. Energy Environ Sci 7:2689–2696CrossRef
25.
Zurück zum Zitat Zhou X, Tang J, Yang J, Xie J, Huang B (2013) Seaweed-like porous carbon from the decomposition of polypyrrole nanowires for application in lithium ion batteries. J Mater Chem A 1:5037–5044CrossRef Zhou X, Tang J, Yang J, Xie J, Huang B (2013) Seaweed-like porous carbon from the decomposition of polypyrrole nanowires for application in lithium ion batteries. J Mater Chem A 1:5037–5044CrossRef
26.
Zurück zum Zitat Qie L, Chen W, Wang Z, Shao Q, Li X (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a super-high capacity and rate capability. Adv Mater 24:2047–2050CrossRef Qie L, Chen W, Wang Z, Shao Q, Li X (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a super-high capacity and rate capability. Adv Mater 24:2047–2050CrossRef
27.
28.
Zurück zum Zitat Wang D, Li F, Yin L, Lu X, Chen Z (2012) Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chem Eur J 18(17):5345–5351CrossRef Wang D, Li F, Yin L, Lu X, Chen Z (2012) Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chem Eur J 18(17):5345–5351CrossRef
29.
Zurück zum Zitat Xu J, Wang M, Wickramaratne N, Jaroniec M, Dou S (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048CrossRef Xu J, Wang M, Wickramaratne N, Jaroniec M, Dou S (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048CrossRef
30.
Zurück zum Zitat Matsumura Y, Wang S, Mondori J (1995) Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J Electrochem Soc 142(9):2914–2918CrossRef Matsumura Y, Wang S, Mondori J (1995) Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J Electrochem Soc 142(9):2914–2918CrossRef
31.
Zurück zum Zitat Thomas P, Billaud D (2002) Electrochemical insertion of sodium into hard carbons. Electrochim Acta 47(20):3303–3307CrossRef Thomas P, Billaud D (2002) Electrochemical insertion of sodium into hard carbons. Electrochim Acta 47(20):3303–3307CrossRef
32.
Zurück zum Zitat Tang K, Fu L, White R, Yu L, Titirici M (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRef Tang K, Fu L, White R, Yu L, Titirici M (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRef
33.
Zurück zum Zitat Zhang K, Li X, Liang J, Zhu Y, Hu L (2015) Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim Acta 155:174–182CrossRef Zhang K, Li X, Liang J, Zhu Y, Hu L (2015) Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim Acta 155:174–182CrossRef
34.
Zurück zum Zitat Cao Y, Xiao L, Sushko M, Wang W, Schwenzer B (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef Cao Y, Xiao L, Sushko M, Wang W, Schwenzer B (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef
35.
Zurück zum Zitat Gavrilov N, Pasti I, Vujkovic M, Travas-Sejdic J (2012) High-performance charge storage by N-containing nanostructured carbon derived from polyaniline. Carbon 50:3915–3927CrossRef Gavrilov N, Pasti I, Vujkovic M, Travas-Sejdic J (2012) High-performance charge storage by N-containing nanostructured carbon derived from polyaniline. Carbon 50:3915–3927CrossRef
36.
Zurück zum Zitat Hou H, Banks C, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRef Hou H, Banks C, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRef
Metadaten
Titel
Core–shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries
verfasst von
Yaohui Qu
Yimin Deng
Qiang Li
Zhian Zhang
Fanyan Zeng
Yong Yang
Keng Xu
Publikationsdatum
24.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0528-x

Weitere Artikel der Ausgabe 4/2017

Journal of Materials Science 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.