Skip to main content
Erschienen in: Journal of Materials Science 8/2017

29.12.2016 | Original Paper

Distribution effects of secondary twin lamellae on the global and local behavior of hierarchically nanotwinned metals

verfasst von: Hanxun Jin, Jianqiu Zhou

Erschienen in: Journal of Materials Science | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Twin lamellae in hierarchical nanotwinned metals (HNMs) typically exhibit a random distribution of thickness. Here, a self-consistent model using a micro–macro transition method has been proposed to understand the distribution effects of secondary twin lamellae on the global and local mechanical behaviors of HNMs. The representative volume element (RVE) of this model is composed of secondary twin lamellae with a lognormal distribution. Each RVE in the HNMs follows an elastic–viscoplastic behavior. A mechanism-based strain gradient theory is adopted based on different dislocation densities in twin boundary dislocation pileup zones and grain interiors. Numerical simulation results reveal that not only the mean size of secondary twin lamellae thickness contributes to the global mechanical behaviors, but the variance of the distribution will also affect the material strength, especially for a relatively small mean twin thickness. Additionally, local stress/strain fields are explored under given macroscopic fields. The discrepancy between micro- and macro-fields for two different mean twin lamellae thicknesses is thoroughly discussed. Furthermore, the influence of dispersion, which increases the local stress field while decreasing the local strain field, is also highlighted. This proposed model can help us design functional HNMs by considering the size distribution and local mechanical behaviors caused by size dispersion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556CrossRef Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556CrossRef
2.
Zurück zum Zitat Dao M et al (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55(12):4041–4065CrossRef Dao M et al (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55(12):4041–4065CrossRef
3.
Zurück zum Zitat Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51(19):5743–5774CrossRef Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51(19):5743–5774CrossRef
4.
Zurück zum Zitat Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33(4):223–315CrossRef Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33(4):223–315CrossRef
5.
Zurück zum Zitat Li XY et al (2009) Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Proc Natl Acad Sci USA 106(38):16108–16113CrossRef Li XY et al (2009) Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Proc Natl Acad Sci USA 106(38):16108–16113CrossRef
6.
Zurück zum Zitat Lu L et al (2009) Revealing the maximum strength in nanotwinned copper. Science 323(5914):607–610CrossRef Lu L et al (2009) Revealing the maximum strength in nanotwinned copper. Science 323(5914):607–610CrossRef
7.
Zurück zum Zitat Dao M et al (2006) Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater 54(20):5421–5432CrossRef Dao M et al (2006) Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater 54(20):5421–5432CrossRef
8.
Zurück zum Zitat Ovidko IA, Skiba NV (2014) Nanotwins induced by grain boundary deformation processes in nanomaterials. Scr Mater 71:33–36CrossRef Ovidko IA, Skiba NV (2014) Nanotwins induced by grain boundary deformation processes in nanomaterials. Scr Mater 71:33–36CrossRef
9.
Zurück zum Zitat Shen YF et al (2006) Strain rate sensitivity of Cu with nanoscale twins. Scr Mater 55(4):319–322CrossRef Shen YF et al (2006) Strain rate sensitivity of Cu with nanoscale twins. Scr Mater 55(4):319–322CrossRef
10.
Zurück zum Zitat Li X et al (2010) Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464(7290):877–880CrossRef Li X et al (2010) Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464(7290):877–880CrossRef
11.
Zurück zum Zitat Zhou HF et al (2014) A jogged dislocation governed strengthening mechanism in nanotwinned metals. Nano Lett 14(9):5075–5080CrossRef Zhou HF et al (2014) A jogged dislocation governed strengthening mechanism in nanotwinned metals. Nano Lett 14(9):5075–5080CrossRef
12.
Zurück zum Zitat Sansoz F et al (2016) Strengthening and plasticity in nanotwinned metals. MRS Bull 41(4):292–297CrossRef Sansoz F et al (2016) Strengthening and plasticity in nanotwinned metals. MRS Bull 41(4):292–297CrossRef
13.
Zurück zum Zitat Zhang S et al (2013) Effect of twin boundaries on nanovoid growth based on dislocation emission. Mater Sci Eng A 582:29–35CrossRef Zhang S et al (2013) Effect of twin boundaries on nanovoid growth based on dislocation emission. Mater Sci Eng A 582:29–35CrossRef
14.
Zurück zum Zitat Zhu YT et al (2009) Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Mater 57(13):3763–3770CrossRef Zhu YT et al (2009) Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Mater 57(13):3763–3770CrossRef
15.
Zurück zum Zitat Li LL et al (2013) Effect of crystallographic orientation and grain boundary character on fatigue cracking behaviors of coaxial copper bicrystals. Acta Mater 61(2):425–438CrossRef Li LL et al (2013) Effect of crystallographic orientation and grain boundary character on fatigue cracking behaviors of coaxial copper bicrystals. Acta Mater 61(2):425–438CrossRef
16.
Zurück zum Zitat Li LL et al (2014) Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary. Nat Commun 5:3536 Li LL et al (2014) Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary. Nat Commun 5:3536
17.
Zurück zum Zitat Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57(1):1–62CrossRef Zhu YT, Liao XZ, Wu XL (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57(1):1–62CrossRef
18.
Zurück zum Zitat Müllner P, King AH (2010) Deformation of hierarchically twinned martensite. Acta Mater 58(16):5242–5261CrossRef Müllner P, King AH (2010) Deformation of hierarchically twinned martensite. Acta Mater 58(16):5242–5261CrossRef
19.
Zurück zum Zitat Kou H (2011) Development of high strength and high ductility nanostructured TWIP steel. PhD thesis Kou H (2011) Development of high strength and high ductility nanostructured TWIP steel. PhD thesis
20.
Zurück zum Zitat Kou H, Lu J, Li Y (2014) High-strength and high-ductility nanostructured and amorphous metallic materials. Adv Mater 26(31):5518–5524CrossRef Kou H, Lu J, Li Y (2014) High-strength and high-ductility nanostructured and amorphous metallic materials. Adv Mater 26(31):5518–5524CrossRef
21.
Zurück zum Zitat Yuan F, Wu X (2013) Size effects of primary/secondary twins on the atomistic deformation mechanisms in hierarchically nanotwinned metals. J Appl Phys 113(20):203516CrossRef Yuan F, Wu X (2013) Size effects of primary/secondary twins on the atomistic deformation mechanisms in hierarchically nanotwinned metals. J Appl Phys 113(20):203516CrossRef
22.
Zurück zum Zitat Zhu L et al (2015) Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model. J Mech Phys Solids 76:162–179CrossRef Zhu L et al (2015) Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model. J Mech Phys Solids 76:162–179CrossRef
23.
Zurück zum Zitat Zhu L, Kou H, Lu J (2012) On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals. Appl Phys Lett 101(8):081906CrossRef Zhu L, Kou H, Lu J (2012) On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals. Appl Phys Lett 101(8):081906CrossRef
24.
Zurück zum Zitat Zhu L et al (2011) Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater 59(14):5544–5557CrossRef Zhu L et al (2011) Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater 59(14):5544–5557CrossRef
26.
Zurück zum Zitat Berbenni S, Favier V, Berveiller M (2007) Micro–macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials. Comput Mater Sci 39(1):96–105CrossRef Berbenni S, Favier V, Berveiller M (2007) Micro–macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials. Comput Mater Sci 39(1):96–105CrossRef
27.
Zurück zum Zitat Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189CrossRef Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189CrossRef
28.
Zurück zum Zitat Kurzydłowski KJ (1990) A model for the flow stress dependence on the distribution of grain size in polycrystals. Scr Metall Mater 24(5):879–883CrossRef Kurzydłowski KJ (1990) A model for the flow stress dependence on the distribution of grain size in polycrystals. Scr Metall Mater 24(5):879–883CrossRef
29.
Zurück zum Zitat Wu B, Wei Y (2008) Simulations of mechanical behavior of polycrystalline copper with nano-twins. Acta Mech Solida Sin 21(3):189–197CrossRef Wu B, Wei Y (2008) Simulations of mechanical behavior of polycrystalline copper with nano-twins. Acta Mech Solida Sin 21(3):189–197CrossRef
30.
Zurück zum Zitat Xie C et al (2015) The impact of twin lamella thickness distribution on strength and endurance limit in nanotwinned copper. Mech Mater 84:91–99CrossRef Xie C et al (2015) The impact of twin lamella thickness distribution on strength and endurance limit in nanotwinned copper. Mech Mater 84:91–99CrossRef
31.
Zurück zum Zitat Wu ZX, Zhang YW, Srolovitz DJ (2009) Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals. Acta Mater 57(15):4508–4518CrossRef Wu ZX, Zhang YW, Srolovitz DJ (2009) Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals. Acta Mater 57(15):4508–4518CrossRef
32.
Zurück zum Zitat Shen YF et al (2005) Tensile properties of copper with nano-scale twins. Scr Mater 52(10):989–994CrossRef Shen YF et al (2005) Tensile properties of copper with nano-scale twins. Scr Mater 52(10):989–994CrossRef
33.
Zurück zum Zitat You ZS, Lu L, Lu K (2010) Temperature effect on rolling behavior of nano-twinned copper. Scr Mater 62(6):415–418CrossRef You ZS, Lu L, Lu K (2010) Temperature effect on rolling behavior of nano-twinned copper. Scr Mater 62(6):415–418CrossRef
34.
Zurück zum Zitat Zhu B et al (2006) Effects of grain size distribution on the mechanical response of nanocrystalline metals: part II. Acta Mater 54(12):3307–3320CrossRef Zhu B et al (2006) Effects of grain size distribution on the mechanical response of nanocrystalline metals: part II. Acta Mater 54(12):3307–3320CrossRef
35.
Zurück zum Zitat Zhu B et al (2005) Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater 53(18):4825–4838CrossRef Zhu B et al (2005) Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater 53(18):4825–4838CrossRef
36.
Zurück zum Zitat Gao H et al (1999) Mechanism-based strain gradient plasticity—I. Theory. J Mech Phys Solids 47(6):1239–1263CrossRef Gao H et al (1999) Mechanism-based strain gradient plasticity—I. Theory. J Mech Phys Solids 47(6):1239–1263CrossRef
37.
Zurück zum Zitat Huang Y et al (2004) A conventional theory of mechanism-based strain gradient plasticity. Int J Plast 20(4–5):753–782CrossRef Huang Y et al (2004) A conventional theory of mechanism-based strain gradient plasticity. Int J Plast 20(4–5):753–782CrossRef
38.
Zurück zum Zitat Taylor GI (1934) The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc R Soc Lond A 145(855):362–387CrossRef Taylor GI (1934) The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc R Soc Lond A 145(855):362–387CrossRef
39.
Zurück zum Zitat Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171–273CrossRef Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171–273CrossRef
40.
Zurück zum Zitat Berbenni S et al (2004) Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels having different microstructures. Mater Sci Eng A 372(1–2):128–136CrossRef Berbenni S et al (2004) Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels having different microstructures. Mater Sci Eng A 372(1–2):128–136CrossRef
41.
Zurück zum Zitat Berbenni S, Favier V, Berveiller M (2007) Impact of the grain size distribution on the yield stress of heterogeneous materials. Int J Plast 23(1):114–142CrossRef Berbenni S, Favier V, Berveiller M (2007) Impact of the grain size distribution on the yield stress of heterogeneous materials. Int J Plast 23(1):114–142CrossRef
42.
Zurück zum Zitat Wei YJ, Su C, Anand L (2006) A computational study of the mechanical behavior of nanocrystalline fcc metals. Acta Mater 54(12):3177–3190CrossRef Wei YJ, Su C, Anand L (2006) A computational study of the mechanical behavior of nanocrystalline fcc metals. Acta Mater 54(12):3177–3190CrossRef
43.
Zurück zum Zitat Gross D, Li M (2002) Constructing microstructures of poly- and nanocrystalline materials for numerical modeling and simulation. Appl Phys Lett 80(5):746–748CrossRef Gross D, Li M (2002) Constructing microstructures of poly- and nanocrystalline materials for numerical modeling and simulation. Appl Phys Lett 80(5):746–748CrossRef
44.
Zurück zum Zitat Qi DX et al (2015) Strain-delocalizing effect of a metal substrate on nanocrystalline Ni film. Mater Sci Eng A 640:408–418CrossRef Qi DX et al (2015) Strain-delocalizing effect of a metal substrate on nanocrystalline Ni film. Mater Sci Eng A 640:408–418CrossRef
45.
Zurück zum Zitat Wang Y et al (2012) Coupled effects of grain size and orientation on properties of nanocrystalline materials. Comput Mater Sci 58:175–182CrossRef Wang Y et al (2012) Coupled effects of grain size and orientation on properties of nanocrystalline materials. Comput Mater Sci 58:175–182CrossRef
46.
Zurück zum Zitat Liu Y, Zhou J, Ling X (2010) Impact of grain size distribution on the multiscale mechanical behavior of nanocrystalline materials. Mater Sci Eng A 527(7–8):1719–1729CrossRef Liu Y, Zhou J, Ling X (2010) Impact of grain size distribution on the multiscale mechanical behavior of nanocrystalline materials. Mater Sci Eng A 527(7–8):1719–1729CrossRef
Metadaten
Titel
Distribution effects of secondary twin lamellae on the global and local behavior of hierarchically nanotwinned metals
verfasst von
Hanxun Jin
Jianqiu Zhou
Publikationsdatum
29.12.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0708-8

Weitere Artikel der Ausgabe 8/2017

Journal of Materials Science 8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.