Skip to main content
Erschienen in: Journal of Materials Science 9/2016

22.01.2016 | Original Paper

Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries

verfasst von: Marie-Laure C. Piedboeuf, Alexandre F. Léonard, Fabien L. Deschamps, Nathalie Job

Erschienen in: Journal of Materials Science | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanisms of Li+ insertion in porous hard carbons used as anodes for Li-ion batteries are still a matter of debate, especially considering the divergence of electrochemical performances observed in the literature. Since these materials usually exhibit several levels of porosity, the pore texture versus electrochemical behavior relationship is difficult to establish. In this paper, we propose to use carbon xerogels, prepared from aqueous resorcinol–formaldehyde mixtures, as model materials for Li-ion battery anodes to study the influence of the pore texture on the overall electrochemical behavior. Indeed, carbon xerogels are described as microporous nodules linked together to form meso- or macroporous voids inside a 3D gel structure; the size of these voids can be tuned by changing the synthesis conditions without affecting other parameters such as the micropore volume. The materials are chosen so as to obtain identical average particle sizes, homogeneous coatings with similar thicknesses, and a comparable surface chemistry. The electrochemical behaviors of carbon xerogels as Li-ion anodes are correlated with the surface accessible to the electrolyte and are not dependent on the total specific surface area calculated by the BET method from nitrogen adsorption isotherms. The key parameter proposed to understand their behavior is the external surface area of the nodules, which corresponds to the surface of the meso/macropores.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7:14–18CrossRef Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7:14–18CrossRef
2.
Zurück zum Zitat Wang K-X, Li X-H, Chen J-S (2015) Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 27:527–545CrossRef Wang K-X, Li X-H, Chen J-S (2015) Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 27:527–545CrossRef
3.
Zurück zum Zitat Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef
4.
Zurück zum Zitat Buiel E, Dahn JR (1999) Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim Acta 45:121–130CrossRef Buiel E, Dahn JR (1999) Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim Acta 45:121–130CrossRef
5.
Zurück zum Zitat Guo B, Wang X, Fulvio PF, Chi M, Mahurin SM, Sun X-G, Dai S (2011) Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv Mater 23:4661–4666CrossRef Guo B, Wang X, Fulvio PF, Chi M, Mahurin SM, Sun X-G, Dai S (2011) Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv Mater 23:4661–4666CrossRef
6.
Zurück zum Zitat Ni J, Huang Y, Gao L (2013) A high-performance hard carbon for Li-ion batteries and supercapacitors application. J Power Sources 223:306–311CrossRef Ni J, Huang Y, Gao L (2013) A high-performance hard carbon for Li-ion batteries and supercapacitors application. J Power Sources 223:306–311CrossRef
7.
Zurück zum Zitat Gong J, Wu H, Yang Q (1999) Structural and electrochemical properties of disordered carbon prepared by the pyrolysis of poly(p-phenylene) below 1000°C for the anode of a lithium-ion battery. Carbon 37:1409–1416CrossRef Gong J, Wu H, Yang Q (1999) Structural and electrochemical properties of disordered carbon prepared by the pyrolysis of poly(p-phenylene) below 1000°C for the anode of a lithium-ion battery. Carbon 37:1409–1416CrossRef
8.
Zurück zum Zitat Xue JS, Dahn JR (1995) Dramatic effect of oxidation on lithium insertion in carbons made from epoxy resins. J Electrochem Soc 142:3668–3677CrossRef Xue JS, Dahn JR (1995) Dramatic effect of oxidation on lithium insertion in carbons made from epoxy resins. J Electrochem Soc 142:3668–3677CrossRef
9.
Zurück zum Zitat Guérin K, Menetrier M, Fevrier-Bouvier A, Flandrois S, Simon B, Biensan P (2000) A 7Li NMR study of a hard carbon for lithium-ion rechargeable batteries. Solid State Ion 127:187–198CrossRef Guérin K, Menetrier M, Fevrier-Bouvier A, Flandrois S, Simon B, Biensan P (2000) A 7Li NMR study of a hard carbon for lithium-ion rechargeable batteries. Solid State Ion 127:187–198CrossRef
10.
Zurück zum Zitat Takami N, Satoh A, Ohsaki T, Kanda M (1997) Lithium insertion and extraction for high-capacity disordered carbons with large hysteresis. Electrochim Acta 42:2537–2543CrossRef Takami N, Satoh A, Ohsaki T, Kanda M (1997) Lithium insertion and extraction for high-capacity disordered carbons with large hysteresis. Electrochim Acta 42:2537–2543CrossRef
11.
Zurück zum Zitat Nagao M, Pitteloud C, Kamiyama T, Otomo T, Itoh K, Fukunaga T, Tatsumi K, Kanno R (2006) Structure characterization and lithiation mechanism of nongraphitized carbon for lithium secondary batteries. J Electrochem Soc 153:A914–A919CrossRef Nagao M, Pitteloud C, Kamiyama T, Otomo T, Itoh K, Fukunaga T, Tatsumi K, Kanno R (2006) Structure characterization and lithiation mechanism of nongraphitized carbon for lithium secondary batteries. J Electrochem Soc 153:A914–A919CrossRef
12.
Zurück zum Zitat Fujimoto H, Mabuchi A, Tokumitsu K, Chinnasamy N, Kasuh T (2011) 7Li nuclear magnetic resonance studies of hard carbon and graphite/hard carbon hybrid anode for Li ion battery. J Power Sources 196:1365–1370CrossRef Fujimoto H, Mabuchi A, Tokumitsu K, Chinnasamy N, Kasuh T (2011) 7Li nuclear magnetic resonance studies of hard carbon and graphite/hard carbon hybrid anode for Li ion battery. J Power Sources 196:1365–1370CrossRef
13.
Zurück zum Zitat Hori H, Shikano M, Kobayashi H, Koike S, Sakaebe H, Saito Y, Tatsumi K, Yoshikawa H, Ikenaga E (2013) Analysis of hard carbon for lithium-ion batteries by hard X-ray photoelectron spectroscopy. J Power Sources 242:844–847CrossRef Hori H, Shikano M, Kobayashi H, Koike S, Sakaebe H, Saito Y, Tatsumi K, Yoshikawa H, Ikenaga E (2013) Analysis of hard carbon for lithium-ion batteries by hard X-ray photoelectron spectroscopy. J Power Sources 242:844–847CrossRef
14.
Zurück zum Zitat Bridges CA, Sun X-G, Zhao J, Paranthaman MP, Dai S (2012) In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C 116:7701–7711CrossRef Bridges CA, Sun X-G, Zhao J, Paranthaman MP, Dai S (2012) In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C 116:7701–7711CrossRef
15.
Zurück zum Zitat Hasegawa T, Mukai SR, Shirato Y, Tamon H (2004) Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes. Carbon 42:2573–2579CrossRef Hasegawa T, Mukai SR, Shirato Y, Tamon H (2004) Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes. Carbon 42:2573–2579CrossRef
16.
Zurück zum Zitat Zhang H, Xu H, Zhao C (2012) Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol–formaldehyde precursor microspheres and applications in lithium-ion batteries. Mater Chem Phys 133:429–436CrossRef Zhang H, Xu H, Zhao C (2012) Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol–formaldehyde precursor microspheres and applications in lithium-ion batteries. Mater Chem Phys 133:429–436CrossRef
17.
Zurück zum Zitat Wang Y, Su F, Wood CD, Lee JY, Zhao XS (2008) Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind Eng Chem Res 47:2294–2300CrossRef Wang Y, Su F, Wood CD, Lee JY, Zhao XS (2008) Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind Eng Chem Res 47:2294–2300CrossRef
18.
Zurück zum Zitat Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv Funct Mater 15:547–556CrossRef Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv Funct Mater 15:547–556CrossRef
19.
Zurück zum Zitat Zhu Y, Xiang X, Liu E, Wu Y, Xie H, Wu Z, Tian Y (2012) An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode. Mater Res Bull 47:2045–2050CrossRef Zhu Y, Xiang X, Liu E, Wu Y, Xie H, Wu Z, Tian Y (2012) An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode. Mater Res Bull 47:2045–2050CrossRef
20.
Zurück zum Zitat Nian-Ping L, Jun S, Da-Yong G, Dong L, Xiao-Wei Z, Ya-Jie L (2013) Effect of carbon aerogel activation on electrode lithium insertion performance. Acta Phys 29:966–972 Nian-Ping L, Jun S, Da-Yong G, Dong L, Xiao-Wei Z, Ya-Jie L (2013) Effect of carbon aerogel activation on electrode lithium insertion performance. Acta Phys 29:966–972
21.
Zurück zum Zitat Liu X, Li S, Mei J, Lau W-M, Mi R, Li Y, Liu H, Liu L (2014) From melamine-resorcinol-formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. J Mater Chem A 35:14429–14438CrossRef Liu X, Li S, Mei J, Lau W-M, Mi R, Li Y, Liu H, Liu L (2014) From melamine-resorcinol-formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. J Mater Chem A 35:14429–14438CrossRef
22.
Zurück zum Zitat Zanto EJR, Ritter JA, Popov BN (1999) Sol–gel derived carbon aerogels and xerogels for use as the anode in the lithium ion battery. Proc Electrochem Soc 98:71–81 Zanto EJR, Ritter JA, Popov BN (1999) Sol–gel derived carbon aerogels and xerogels for use as the anode in the lithium ion battery. Proc Electrochem Soc 98:71–81
23.
Zurück zum Zitat Yuan X, Chao Y-J, Ma Z-F, Deng X (2007) Preparation and characterization of carbon xerogel (CX) and CX–SiO composite as anode material for lithium-ion battery. Electrochem Commun 9:2591–2595CrossRef Yuan X, Chao Y-J, Ma Z-F, Deng X (2007) Preparation and characterization of carbon xerogel (CX) and CX–SiO composite as anode material for lithium-ion battery. Electrochem Commun 9:2591–2595CrossRef
24.
Zurück zum Zitat Kakunuri M, Vennamalla S, Sharma CS (2015) Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol-formaldehyde and their use as anode materials for lithium-ion battery. RSC Adv 5:4747–4753CrossRef Kakunuri M, Vennamalla S, Sharma CS (2015) Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol-formaldehyde and their use as anode materials for lithium-ion battery. RSC Adv 5:4747–4753CrossRef
25.
Zurück zum Zitat Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud J-N, Béguin F, Pirard J-P (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494CrossRef Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud J-N, Béguin F, Pirard J-P (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494CrossRef
26.
Zurück zum Zitat Rey-Raap N, Menéndez JA, Arenillas A (2014) RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater 195:266–275CrossRef Rey-Raap N, Menéndez JA, Arenillas A (2014) RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater 195:266–275CrossRef
27.
Zurück zum Zitat Piedboeuf M-LC, Léonard AF, Traina K, Job N (2015) Influence of the textural parameters of resorcinol–formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling. Colloids Surf A 471:124–132CrossRef Piedboeuf M-LC, Léonard AF, Traina K, Job N (2015) Influence of the textural parameters of resorcinol–formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling. Colloids Surf A 471:124–132CrossRef
28.
Zurück zum Zitat Job N, Pirard R, Marien J, Pirard J-P (2004) Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42:619–628CrossRef Job N, Pirard R, Marien J, Pirard J-P (2004) Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42:619–628CrossRef
29.
Zurück zum Zitat Lecloux AJ (1981) Texture of catalysts. Catal Sci Technol 2:171–230 Lecloux AJ (1981) Texture of catalysts. Catal Sci Technol 2:171–230
30.
Zurück zum Zitat Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci 7:115–116CrossRef Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci 7:115–116CrossRef
31.
Zurück zum Zitat Nguyen C, Do DD (2001) The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon 39:1327–1336CrossRef Nguyen C, Do DD (2001) The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon 39:1327–1336CrossRef
32.
Zurück zum Zitat Sing KSW, Gregg SJ (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London Sing KSW, Gregg SJ (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London
33.
Zurück zum Zitat Reddy TB (2011) Linden’s handbook of batteries, 4th edn. Mac Graw Hill, New York Reddy TB (2011) Linden’s handbook of batteries, 4th edn. Mac Graw Hill, New York
34.
Zurück zum Zitat Béguin F, Chevallier F, Vix-Guterl C, Saadallah S, Bertagna V, Rouzaud JN, Frackowiak E (2005) Correlation of the irreversible lithium capacity with the active surface area of modified carbons. Carbon 43:2160–2167CrossRef Béguin F, Chevallier F, Vix-Guterl C, Saadallah S, Bertagna V, Rouzaud JN, Frackowiak E (2005) Correlation of the irreversible lithium capacity with the active surface area of modified carbons. Carbon 43:2160–2167CrossRef
35.
Zurück zum Zitat Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787CrossRef Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787CrossRef
36.
Zurück zum Zitat Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251CrossRef Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251CrossRef
Metadaten
Titel
Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries
verfasst von
Marie-Laure C. Piedboeuf
Alexandre F. Léonard
Fabien L. Deschamps
Nathalie Job
Publikationsdatum
22.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9748-3

Weitere Artikel der Ausgabe 9/2016

Journal of Materials Science 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.