Skip to main content
Erschienen in: Journal of Materials Science 9/2016

28.01.2016 | Original Paper

Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering

verfasst von: Jian-Xin He, Wei-Lin Tan, Qi-Ming Han, Shi-Zhong Cui, Weili Shao, Feng Sang

Erschienen in: Journal of Materials Science | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bone tissue engineering necessitates a three-dimensional porous scaffold design to closely mimic the in vivo physiological biomimetic microenvironment with good mechanical properties to support the adhesion and proliferation of osteoblasts. In this study, a silk fibroin/cellulose nanowhiskers–chitosan (SF/CNW–CS) composite scaffold with excellent mechanical properties and biological compatibility was prepared by layer-by-layer assembly of CNW and CS onto a porous SF scaffold fabricated by freeze-drying. The morphology, assembly construct, and mechanical properties of the SF/CNW–CS composite scaffold were characterized using different technical methods. The hierarchical lamellar structure was formed by assembly of CNW and CS onto the SF lamella. Increasing the number of CNW and CS assembly layers to 108 slightly decreased the porosity from 86 to 78 % and simultaneously changed the compressive stress–strain curves from soft to hard tissue-like properties with an increase in compressive modulus from 2.5 to 12.5 MPa. Human MG-63 osteosarcoma cells were further cultured on the SF/CNW–CS scaffold to evaluate their suitability for bone tissue engineering. The results indicated that the SF/CNW–CS composite scaffold supported cell proliferation and promoted the levels of biomineralization-relevant alkaline phosphatase activity and osteocalcin expression over those for a porous SF scaffold. Taken together, our results indicate that the porous SF/CNW–CS composite material will be a promising tissue engineering scaffold for bone generation and implantation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470CrossRef Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470CrossRef
2.
Zurück zum Zitat Lai GJ, Shalumon KT, Chen SH, Chen JP (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297CrossRef Lai GJ, Shalumon KT, Chen SH, Chen JP (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297CrossRef
3.
Zurück zum Zitat Lee H, Kim G (2011) Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydr Polym 85:817–823CrossRef Lee H, Kim G (2011) Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydr Polym 85:817–823CrossRef
4.
Zurück zum Zitat Meinel L, Fajardo R, Hofmann S et al (2005) Silk implants for the healing of critical size bone defects. Bone 37:688–698CrossRef Meinel L, Fajardo R, Hofmann S et al (2005) Silk implants for the healing of critical size bone defects. Bone 37:688–698CrossRef
5.
Zurück zum Zitat Kundu J, Chung YI, Kim YH, Tae G, Kundu SC (2010) Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 388:242–250CrossRef Kundu J, Chung YI, Kim YH, Tae G, Kundu SC (2010) Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 388:242–250CrossRef
6.
Zurück zum Zitat Alves da Silva ML, Crawford A, Mundy JM et al (2010) Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater 6:1149–1157CrossRef Alves da Silva ML, Crawford A, Mundy JM et al (2010) Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater 6:1149–1157CrossRef
7.
Zurück zum Zitat Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, Vunjak-Novakovic G (2004) Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 88:379–391CrossRef Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, Vunjak-Novakovic G (2004) Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 88:379–391CrossRef
8.
Zurück zum Zitat Bhardwaj N, Kundu SC (2012) Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials 33:2848–2857CrossRef Bhardwaj N, Kundu SC (2012) Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials 33:2848–2857CrossRef
9.
Zurück zum Zitat He J, Wang D, Cui S (2012) Novel hydroxyapatite/tussah silk fibroin/chitosan bone-like nanocomposites. Polym Bull 68:1765–1776CrossRef He J, Wang D, Cui S (2012) Novel hydroxyapatite/tussah silk fibroin/chitosan bone-like nanocomposites. Polym Bull 68:1765–1776CrossRef
10.
Zurück zum Zitat Kasoju N, Bora U (2012) Silk fibroin in tissue engineering. Adv Healthc Mater 1:393–412CrossRef Kasoju N, Bora U (2012) Silk fibroin in tissue engineering. Adv Healthc Mater 1:393–412CrossRef
11.
Zurück zum Zitat Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci USA 109:7699–7704CrossRef Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci USA 109:7699–7704CrossRef
12.
Zurück zum Zitat Rajkhowa R, Gil ES, Kludge J, Numata K, Wang L, Wang X, Kaplan DL (2010) Reinforcing silk scaffolds with silk particles. Macromol Biosci 10:599–611CrossRef Rajkhowa R, Gil ES, Kludge J, Numata K, Wang L, Wang X, Kaplan DL (2010) Reinforcing silk scaffolds with silk particles. Macromol Biosci 10:599–611CrossRef
13.
Zurück zum Zitat Meinel L, Betz O, Fajardo R et al (2006) Silk based biomaterials to heal critical sized femur defects. Bone 39:922–931CrossRef Meinel L, Betz O, Fajardo R et al (2006) Silk based biomaterials to heal critical sized femur defects. Bone 39:922–931CrossRef
14.
Zurück zum Zitat Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295:1009–1014CrossRef Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295:1009–1014CrossRef
15.
Zurück zum Zitat Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58:300–322CrossRef Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58:300–322CrossRef
16.
Zurück zum Zitat Jalal Uddin A, Araki J, Gotoh Y (2011) Characterization of the poly(vinyl alcohol)/cellulose whisker gel spun fibers. Compos Part A Appl Sci Manuf 42:741–747CrossRef Jalal Uddin A, Araki J, Gotoh Y (2011) Characterization of the poly(vinyl alcohol)/cellulose whisker gel spun fibers. Compos Part A Appl Sci Manuf 42:741–747CrossRef
17.
Zurück zum Zitat Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRef Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRef
18.
Zurück zum Zitat De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19:24–29CrossRef De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19:24–29CrossRef
19.
Zurück zum Zitat Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef
20.
Zurück zum Zitat Abdollahi M, Alboofetileh M, Rezaei M, Behrooz R (2013) Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic fillers. Food Hydrocoll 32:416–424CrossRef Abdollahi M, Alboofetileh M, Rezaei M, Behrooz R (2013) Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic fillers. Food Hydrocoll 32:416–424CrossRef
21.
Zurück zum Zitat Azizi Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef Azizi Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef
22.
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
23.
Zurück zum Zitat Li R, Zhang Y, Zhu L, Yao J (2011) Fabrication and characterization of silk fibroin/poly(ethylene glycol)/cellulose nanowhisker composite films. J Appl Polym Sci 124:2080–2086CrossRef Li R, Zhang Y, Zhu L, Yao J (2011) Fabrication and characterization of silk fibroin/poly(ethylene glycol)/cellulose nanowhisker composite films. J Appl Polym Sci 124:2080–2086CrossRef
24.
Zurück zum Zitat Neves SC, Moreira Teixeira LS, Moroni L et al (2011) Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32:1068–1079CrossRef Neves SC, Moreira Teixeira LS, Moroni L et al (2011) Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32:1068–1079CrossRef
25.
Zurück zum Zitat Wu MY, Chen N, Liu LK, Yuan H, Li QL, Chen SH (2009) Chitosan/alginate multilayer scaffold encapsulating bone marrow stromal cells in situ on titanium. J Bioact Compat Polym 24:301–315CrossRef Wu MY, Chen N, Liu LK, Yuan H, Li QL, Chen SH (2009) Chitosan/alginate multilayer scaffold encapsulating bone marrow stromal cells in situ on titanium. J Bioact Compat Polym 24:301–315CrossRef
26.
Zurück zum Zitat Hsu YY, Gresser JD, Trantolo DJ, Lyons CM, Gangadharam PR, Wise DL (1997) Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J Biomed Mater Res 35:107–116CrossRef Hsu YY, Gresser JD, Trantolo DJ, Lyons CM, Gangadharam PR, Wise DL (1997) Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J Biomed Mater Res 35:107–116CrossRef
27.
Zurück zum Zitat Shao WL, He JX, Sang F, Ding B, Chen L, Cui SZ, Li KJ, Han QM, Tan WL (2016) Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C 58:342–351CrossRef Shao WL, He JX, Sang F, Ding B, Chen L, Cui SZ, Li KJ, Han QM, Tan WL (2016) Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C 58:342–351CrossRef
28.
Zurück zum Zitat Wang SG, Castro R, An X, Song CL, Luo Y, Shen MW, Tomas H, Zhu MF, Shi XY (2012) Electrospun laponite-doped poly(lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Mater Chem 22:23357–23367CrossRef Wang SG, Castro R, An X, Song CL, Luo Y, Shen MW, Tomas H, Zhu MF, Shi XY (2012) Electrospun laponite-doped poly(lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Mater Chem 22:23357–23367CrossRef
29.
Zurück zum Zitat Zhou P, Cheng XS, Xia Y, Wang PF, Zou KD, Xu SG, Du JZ (2014) Organic/inorganic composite membranes based on poly(l-lactic-co-glycolic acid) and mesoporous silica for effective bone tissue engineering. ACS Appl Mater Interfaces. 6:20895–20903CrossRef Zhou P, Cheng XS, Xia Y, Wang PF, Zou KD, Xu SG, Du JZ (2014) Organic/inorganic composite membranes based on poly(l-lactic-co-glycolic acid) and mesoporous silica for effective bone tissue engineering. ACS Appl Mater Interfaces. 6:20895–20903CrossRef
30.
Zurück zum Zitat Nge TT, Nogi M, Yano H, Sugiyama J (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363CrossRef Nge TT, Nogi M, Yano H, Sugiyama J (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363CrossRef
31.
Zurück zum Zitat Fan XX, Ren HH, Chen ST, Wang GN, Deng TY, Chen XT, Yan YG (2014) Comparative studies on the material performances of natural bone-like apatite from different bone sources. J Biomed Eng 31(2):352–356 Fan XX, Ren HH, Chen ST, Wang GN, Deng TY, Chen XT, Yan YG (2014) Comparative studies on the material performances of natural bone-like apatite from different bone sources. J Biomed Eng 31(2):352–356
32.
Zurück zum Zitat Qi R, Cao X, Shen M, Guo R, Yu J, Shi X (2012) Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers. J Biomater Sci Polym Ed 23:299–313CrossRef Qi R, Cao X, Shen M, Guo R, Yu J, Shi X (2012) Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers. J Biomater Sci Polym Ed 23:299–313CrossRef
33.
Zurück zum Zitat Meng ZX, Zheng W, Li L, Zheng YF (2010) Fabrication and characterization of three-dimensional nanofiber membrane of PCL–MWCNTs by electrospinning. Mater Sci Eng C 30:1014–1021CrossRef Meng ZX, Zheng W, Li L, Zheng YF (2010) Fabrication and characterization of three-dimensional nanofiber membrane of PCL–MWCNTs by electrospinning. Mater Sci Eng C 30:1014–1021CrossRef
Metadaten
Titel
Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering
verfasst von
Jian-Xin He
Wei-Lin Tan
Qi-Ming Han
Shi-Zhong Cui
Weili Shao
Feng Sang
Publikationsdatum
28.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9752-7

Weitere Artikel der Ausgabe 9/2016

Journal of Materials Science 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.