Skip to main content
Erschienen in: Journal of Materials Science 11/2016

26.02.2016 | Original Paper

Magnetic properties and large magnetocaloric effect in Ho2Cu2In and Ho2Au2In compounds

verfasst von: Lingwei Li, Yalin Yi, Kunpeng Su, Yang Qi, Dexuan Huo, Rainer Pöttgen

Erschienen in: Journal of Materials Science | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The magnetic and magnetocaloric properties of Ho2Cu2In and Ho2Au2In have been investigated. A second-order magnetic phase transition from a paramagnetic to a ferromagnetic state was observed for Ho2Cu2In and Ho2Au2In at Curie temperatures of T C ~ 30 and 21 K, respectively. An additional magnetic transition at 8 K was also observed for Ho2Au2In which is probably related to a spin reorientation phenomenon. A large reversible magnetocaloric effect was observed for both compounds. The maximum values of magnetic entropy change (−ΔS M max ) are 21.9 and 15.8 J/kg K under a field change of 0–7 T for Ho2Cu2In and Ho2Au2In, with the values of the relative cooling power of 638 and 490 J/kg, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat de Oliveira NA, von Ranke PJ (2010) Theoretical aspects of the magnetocaloric effect. Phys Rep 489:89–159CrossRef de Oliveira NA, von Ranke PJ (2010) Theoretical aspects of the magnetocaloric effect. Phys Rep 489:89–159CrossRef
2.
Zurück zum Zitat Franco V, Blázquez JS, Ingale B, Conde A (2012) The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Ann Rev Mater Res 42:305–342CrossRef Franco V, Blázquez JS, Ingale B, Conde A (2012) The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Ann Rev Mater Res 42:305–342CrossRef
3.
Zurück zum Zitat Moya X, Defay E, Heine V, Mathur ND (2015) Too cool to work. Nat Phys 11:202–205CrossRef Moya X, Defay E, Heine V, Mathur ND (2015) Too cool to work. Nat Phys 11:202–205CrossRef
4.
Zurück zum Zitat Phan MH, Franco V, Chaturvedi A, Stefanoski S, Kirby H, Nolas GS, Srikanth H (2010) Magnetocaloric effect and refrigerant capacity in Sr-doped Eu8Ga16Ge30 type-I clathrates. J Appl Phys 107:09A910-1–09A910-3CrossRef Phan MH, Franco V, Chaturvedi A, Stefanoski S, Kirby H, Nolas GS, Srikanth H (2010) Magnetocaloric effect and refrigerant capacity in Sr-doped Eu8Ga16Ge30 type-I clathrates. J Appl Phys 107:09A910-1–09A910-3CrossRef
5.
Zurück zum Zitat Wagh AA, Suresh KG, Kumar PA, Elizabeth S (2015) Low temperature giant magnetocaloric effect in multiferroic GdMnO3 single crystals. J Phys D 48:135001-1–135001-7CrossRef Wagh AA, Suresh KG, Kumar PA, Elizabeth S (2015) Low temperature giant magnetocaloric effect in multiferroic GdMnO3 single crystals. J Phys D 48:135001-1–135001-7CrossRef
6.
Zurück zum Zitat Rubi K, Kumar P, Repaka DM, Chen R, Wang JS, Mahendiran R (2014) Giant magnetocaloric effect in magnetoelectric Eu1−xBaxTiO3. Appl Phys Lett 104:032407-1–032407-4CrossRef Rubi K, Kumar P, Repaka DM, Chen R, Wang JS, Mahendiran R (2014) Giant magnetocaloric effect in magnetoelectric Eu1−xBaxTiO3. Appl Phys Lett 104:032407-1–032407-4CrossRef
7.
Zurück zum Zitat Zhang YK, Hou L, Ren ZM, Li X, Wilde G (2016) Magnetic properties and magnetocaloric effect in TmZnAl and TmAgAl compounds. J Alloy Compd 565:635–639CrossRef Zhang YK, Hou L, Ren ZM, Li X, Wilde G (2016) Magnetic properties and magnetocaloric effect in TmZnAl and TmAgAl compounds. J Alloy Compd 565:635–639CrossRef
8.
Zurück zum Zitat Zhang YK, Yang BJ, Wilde G (2015) Magnetic properties and magnetocaloric effect in ternary REAgAl (RE = Er and Ho) intermetallic compounds. J Alloy Compd 619:12–15CrossRef Zhang YK, Yang BJ, Wilde G (2015) Magnetic properties and magnetocaloric effect in ternary REAgAl (RE = Er and Ho) intermetallic compounds. J Alloy Compd 619:12–15CrossRef
9.
Zurück zum Zitat Ma Z, Shang YF, Balfour EA, Wu YH, Fu H, Luo Y, Wang SF, Teng BH, Han MG (2016) Magnetic and magnetocaloric properties of GdNi xAl2−x (0.35 ≤ x ≤ 0.70) alloys with multiphase structure. J Mater Sci 51:2134–2140. doi:10.1007/s10853-015-9523-x CrossRef Ma Z, Shang YF, Balfour EA, Wu YH, Fu H, Luo Y, Wang SF, Teng BH, Han MG (2016) Magnetic and magnetocaloric properties of GdNi xAl2−x (0.35 ≤ x ≤ 0.70) alloys with multiphase structure. J Mater Sci 51:2134–2140. doi:10.​1007/​s10853-015-9523-x CrossRef
10.
Zurück zum Zitat Pöttgen R (1994) Er2Au2Sn and other ternary rare earth metal gold stannides with ordered Zr3Al2-Type structure. Z Naturforsch 49b:1309–1313 Pöttgen R (1994) Er2Au2Sn and other ternary rare earth metal gold stannides with ordered Zr3Al2-Type structure. Z Naturforsch 49b:1309–1313
11.
Zurück zum Zitat Rieger W, Nowotny H, Benesovsky F (1964) Die Kristallstruktur von Mo2FeB2. Monatsh Chem 95:1502–1503CrossRef Rieger W, Nowotny H, Benesovsky F (1964) Die Kristallstruktur von Mo2FeB2. Monatsh Chem 95:1502–1503CrossRef
12.
Zurück zum Zitat Lukachuk M, Pöttgen R (2003) Intermetallic compounds with ordered U3Si2 or Zr3Al2 type structure-crystal chemistry, chemical bonding and physical properties. Z Kristallogr 218:767–787 Lukachuk M, Pöttgen R (2003) Intermetallic compounds with ordered U3Si2 or Zr3Al2 type structure-crystal chemistry, chemical bonding and physical properties. Z Kristallogr 218:767–787
13.
Zurück zum Zitat Rodewald ChU, Chevalier B, Pöttgen R (2007) Rare earth-transition metal-magnesium compounds-An overview. J Solid State Chem 180:1720–1736CrossRef Rodewald ChU, Chevalier B, Pöttgen R (2007) Rare earth-transition metal-magnesium compounds-An overview. J Solid State Chem 180:1720–1736CrossRef
14.
Zurück zum Zitat Tappe F, Pöttgen R (2011) Rare earth-transition metal-cadmium intermetallics—crystal chemistry and physical properties. Rev Inorg Chem 31:5–25CrossRef Tappe F, Pöttgen R (2011) Rare earth-transition metal-cadmium intermetallics—crystal chemistry and physical properties. Rev Inorg Chem 31:5–25CrossRef
15.
Zurück zum Zitat Heying B, Rodewald Ch U, Chevalier B, Pöttgen R (2013) The stannides RE2Ni2Sn (RE = Pr, Ho, Er, Tm)—structural transition from the W2B2Co to the Mo2B2Fe type as a function of the rare earth size. Z Naturforsch 68b:10–16 Heying B, Rodewald Ch U, Chevalier B, Pöttgen R (2013) The stannides RE2Ni2Sn (RE = Pr, Ho, Er, Tm)—structural transition from the W2B2Co to the Mo2B2Fe type as a function of the rare earth size. Z Naturforsch 68b:10–16
16.
Zurück zum Zitat Fisher IR, Islam Z, Canfield PC (1999) Magnetic and transport properties of single-crystal R2Cu2In (R = Gd-Tm, Lu). J Magn Magn Mater 202:1–10CrossRef Fisher IR, Islam Z, Canfield PC (1999) Magnetic and transport properties of single-crystal R2Cu2In (R = Gd-Tm, Lu). J Magn Magn Mater 202:1–10CrossRef
17.
Zurück zum Zitat Pöttgen R, Kremer RK, Rayaprol S, Heying B, Hoffmann DR (2007) Magnetic and electrical properties of the intermetallic compounds RE2Au. Z Naturforsch 62b:169–172 Pöttgen R, Kremer RK, Rayaprol S, Heying B, Hoffmann DR (2007) Magnetic and electrical properties of the intermetallic compounds RE2Au. Z Naturforsch 62b:169–172
18.
Zurück zum Zitat Schappacher FM, Hermes W, Pöttgen R (2009) Structure and magnetic properties of RE2Cu2Cd. J Solid State Chem 182:265–272CrossRef Schappacher FM, Hermes W, Pöttgen R (2009) Structure and magnetic properties of RE2Cu2Cd. J Solid State Chem 182:265–272CrossRef
19.
Zurück zum Zitat Rayaprol S, Pöttgen R (2006) Gd2Au2Cd: a Mo2FeB2-type intermetallic with ferromagnetic ordering and spin glass anomalies. Phys Rev B 73:214403–1–214403-8CrossRef Rayaprol S, Pöttgen R (2006) Gd2Au2Cd: a Mo2FeB2-type intermetallic with ferromagnetic ordering and spin glass anomalies. Phys Rev B 73:214403–1–214403-8CrossRef
20.
Zurück zum Zitat Matar SF, Pöttgen R, Chevalier B (2014) Electronic and magnetic structures and bonding properties of Ce2T2X (T = d element; X = Mg, Cd, Pb or Sn) intermetallics from first principles. Intermetallics 51:18–23CrossRef Matar SF, Pöttgen R, Chevalier B (2014) Electronic and magnetic structures and bonding properties of Ce2T2X (T = d element; X = Mg, Cd, Pb or Sn) intermetallics from first principles. Intermetallics 51:18–23CrossRef
21.
Zurück zum Zitat Hulliger F (1996) On tetragonal M2Au2In and related compounds. J Alloy Compd 232:160–164CrossRef Hulliger F (1996) On tetragonal M2Au2In and related compounds. J Alloy Compd 232:160–164CrossRef
22.
Zurück zum Zitat Banerjee BK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12:16–17CrossRef Banerjee BK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12:16–17CrossRef
23.
Zurück zum Zitat Chen J, Shen BG, Dong QY, Hu FX, Sun JR (2009) Large reversible magnetocaloric effect caused by two successive magnetic transitions in ErGa compound. Appl Phys Lett 95:132504-1–132504-3 Chen J, Shen BG, Dong QY, Hu FX, Sun JR (2009) Large reversible magnetocaloric effect caused by two successive magnetic transitions in ErGa compound. Appl Phys Lett 95:132504-1–132504-3
24.
Zurück zum Zitat Li L, Namiki T, Huo D, Qian Z, Nishimura K (2013) Two successive magnetic transitions induced large refrigerant capacity in HoPdIn compound. Appl Phys Lett 103:222405–1–222405-4 Li L, Namiki T, Huo D, Qian Z, Nishimura K (2013) Two successive magnetic transitions induced large refrigerant capacity in HoPdIn compound. Appl Phys Lett 103:222405–1–222405-4
25.
Zurück zum Zitat Chaturvedi A, Stefanoski S, Phan MH, Nolas GS, Srikanth H (2011) Table-like magnetocaloric effect and enhanced refrigerant capacity in Eu8Ga16Ge30-EuO composite materials. Appl Phys Lett 99:162513-1–162513-3CrossRef Chaturvedi A, Stefanoski S, Phan MH, Nolas GS, Srikanth H (2011) Table-like magnetocaloric effect and enhanced refrigerant capacity in Eu8Ga16Ge30-EuO composite materials. Appl Phys Lett 99:162513-1–162513-3CrossRef
26.
Zurück zum Zitat Dong QY, Chen J, Shen J, Sun JR, Shen BG (2011) Magnetic properties and magnetocaloric effects in R3Ni2 (R = Ho and Er) compounds. Appl Phys Lett 99:132504–1–132504-4CrossRef Dong QY, Chen J, Shen J, Sun JR, Shen BG (2011) Magnetic properties and magnetocaloric effects in R3Ni2 (R = Ho and Er) compounds. Appl Phys Lett 99:132504–1–132504-4CrossRef
27.
Zurück zum Zitat Shen J, Wu JF (2011) Magnetocaloric effect and magnetic phase transition in Ho3Co. J Appl Phys 109:07A931-1–07A931-3 Shen J, Wu JF (2011) Magnetocaloric effect and magnetic phase transition in Ho3Co. J Appl Phys 109:07A931-1–07A931-3
28.
Zurück zum Zitat Kim MS, Sung NH, Son Y, Ko MS, Cho BK (2011) Giant reversible anisotropic magnetocaloric effect in an antiferromagnetic EuFe2As2 single crystal. Appl Phys Lett 98:172509–1–172509-3 Kim MS, Sung NH, Son Y, Ko MS, Cho BK (2011) Giant reversible anisotropic magnetocaloric effect in an antiferromagnetic EuFe2As2 single crystal. Appl Phys Lett 98:172509–1–172509-3
29.
Zurück zum Zitat Wang JL, Campbell SJ, Cadogan JM, Studer A, Zeng R, Dou SX (2011) Magnetocaloric effect in layered NdMn2Ge0.4Si1.6. Appl Phys Lett 98:232509–1–232509-3 Wang JL, Campbell SJ, Cadogan JM, Studer A, Zeng R, Dou SX (2011) Magnetocaloric effect in layered NdMn2Ge0.4Si1.6. Appl Phys Lett 98:232509–1–232509-3
30.
Zurück zum Zitat Zimm C, Jastrab A, Sternberg A, Pecharsky VK, Geschneidner KA Jr et al (1998) Description and performance of near-room temperature magnetic refrigerator. Adv Cryog Eng 43:1759–1966CrossRef Zimm C, Jastrab A, Sternberg A, Pecharsky VK, Geschneidner KA Jr et al (1998) Description and performance of near-room temperature magnetic refrigerator. Adv Cryog Eng 43:1759–1966CrossRef
31.
Zurück zum Zitat Smaïli A, Chahine R (1998) Thermodynamic investigations of optimum active magnetic regenerators. Cryogenics 38:247–252CrossRef Smaïli A, Chahine R (1998) Thermodynamic investigations of optimum active magnetic regenerators. Cryogenics 38:247–252CrossRef
32.
Zurück zum Zitat Smaïli A, Chahine R (1997) Composite materials for Ericsson-like magnetic refrigeration cycle. J Appl Phys 81:824–829CrossRef Smaïli A, Chahine R (1997) Composite materials for Ericsson-like magnetic refrigeration cycle. J Appl Phys 81:824–829CrossRef
Metadaten
Titel
Magnetic properties and large magnetocaloric effect in Ho2Cu2In and Ho2Au2In compounds
verfasst von
Lingwei Li
Yalin Yi
Kunpeng Su
Yang Qi
Dexuan Huo
Rainer Pöttgen
Publikationsdatum
26.02.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9845-3

Weitere Artikel der Ausgabe 11/2016

Journal of Materials Science 11/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.