Skip to main content
Erschienen in: Journal of Materials Science 9/2017

06.01.2017 | Original Paper

Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts

verfasst von: Mingjie Wang, Shuling Shen, Long Li, Zhihong Tang, Junhe Yang

Erschienen in: Journal of Materials Science | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of sacrificial reagents (SRs) on photocatalytic H2 evolution rate over different photocatalysts was systematically studied. Zn0.5Cd0.5S, graphitic carbon nitride (g-C3N4), and TiO2 were chosen as typical photocatalysts, while alcohols, amines, carboxylic acids, and inorganic Na2S/Na2SO3 were chosen as SRs. The results indicate that Na2S/Na2SO3, methanol, and triethanolamine are the most suitable SRs for Zn0.5Cd0.5S, TiO2, and g-C3N4, respectively. It was found that in selecting organic SRs, both the permittivity and oxidation potential have profound effects on the H2 production efficiency, which will provide basis for choosing appropriate SRs for different photocatalysts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(29):964–967CrossRef Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(29):964–967CrossRef
2.
Zurück zum Zitat Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrogen Energy 28:55–64CrossRef Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrogen Energy 28:55–64CrossRef
3.
Zurück zum Zitat Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6(1):24–28CrossRef Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6(1):24–28CrossRef
4.
Zurück zum Zitat Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(7):37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(7):37–38CrossRef
5.
Zurück zum Zitat Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864):625–627CrossRef Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864):625–627CrossRef
6.
Zurück zum Zitat Li Q, Guo BD, Yu JG, Ran JR, Zhang BH, Yan HJ, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133(28):10878–10884CrossRef Li Q, Guo BD, Yu JG, Ran JR, Zhang BH, Yan HJ, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133(28):10878–10884CrossRef
7.
Zurück zum Zitat Lingampalli SR, Gautam UK, Rao CNR (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ Sci 6(12):3589–3594CrossRef Lingampalli SR, Gautam UK, Rao CNR (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ Sci 6(12):3589–3594CrossRef
8.
Zurück zum Zitat Xiang QJ, Yu JG (2013) Graphene-based photocatalysts for hydrogen generation. J Phys Chem Lett 4:753–759CrossRef Xiang QJ, Yu JG (2013) Graphene-based photocatalysts for hydrogen generation. J Phys Chem Lett 4:753–759CrossRef
9.
Zurück zum Zitat Tsuji I, Kato H, Kobayashi H, Kudo A (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1−x)S2 solid solution photocatalysts. J Am Chem Soc 126(41):13407–13413CrossRef Tsuji I, Kato H, Kobayashi H, Kudo A (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1−x)S2 solid solution photocatalysts. J Am Chem Soc 126(41):13407–13413CrossRef
10.
Zurück zum Zitat Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80CrossRef Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80CrossRef
11.
Zurück zum Zitat Li YX, Wang H, Peng SQ (2014) Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation. J Phys Chem C 118(34):19842–19848CrossRef Li YX, Wang H, Peng SQ (2014) Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation. J Phys Chem C 118(34):19842–19848CrossRef
12.
Zurück zum Zitat Wang X, Xu Q, Li MR, Shen S, Wang XL, Wang YC, Feng ZC, Shi JY, Han HX, Li C (2012) Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3. Angew Chem Int Ed 51(52):13089–13092CrossRef Wang X, Xu Q, Li MR, Shen S, Wang XL, Wang YC, Feng ZC, Shi JY, Han HX, Li C (2012) Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3. Angew Chem Int Ed 51(52):13089–13092CrossRef
13.
Zurück zum Zitat Kumar S, Khanchandani S, Thirumal M, Ganguli AK (2014) Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures. ACS Appl Mater Interfaces 6(15):13221–13233CrossRef Kumar S, Khanchandani S, Thirumal M, Ganguli AK (2014) Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures. ACS Appl Mater Interfaces 6(15):13221–13233CrossRef
14.
Zurück zum Zitat Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130(23):7176CrossRef Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130(23):7176CrossRef
15.
Zurück zum Zitat Yan HJ, Yang JH, Ma GJ, Wu GP, Zong X, Lei ZB, Shi JY, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266(2):165–168CrossRef Yan HJ, Yang JH, Ma GJ, Wu GP, Zong X, Lei ZB, Shi JY, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266(2):165–168CrossRef
16.
Zurück zum Zitat Berr MJ, Wagner P, Fischbach S, Vaneski A, Schneider J, Susha AS, Rogach AL, Jackel F, Feldmann J (2012) Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl Phys Lett 100:2239031–2239033CrossRef Berr MJ, Wagner P, Fischbach S, Vaneski A, Schneider J, Susha AS, Rogach AL, Jackel F, Feldmann J (2012) Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl Phys Lett 100:2239031–2239033CrossRef
17.
Zurück zum Zitat Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrović A, Volbers D et al (2014) Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater 13:1013–1018CrossRef Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrović A, Volbers D et al (2014) Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater 13:1013–1018CrossRef
18.
Zurück zum Zitat Hernández-Gordillo A, Mendoza-Damián G, Gomez R (2016) Blue-photodecomposition of hydrazine in aqueous solution for H2 production by using CdS photocatalyst. J Chem Technol Biotechnol 91:2179–2184CrossRef Hernández-Gordillo A, Mendoza-Damián G, Gomez R (2016) Blue-photodecomposition of hydrazine in aqueous solution for H2 production by using CdS photocatalyst. J Chem Technol Biotechnol 91:2179–2184CrossRef
19.
Zurück zum Zitat Zhang J, Yu JG, Jaroniec M, Gong JR (2012) Noble metal-free reduced graphene oxide-ZnxCd1−xS nanocomposite with enhanced solar photocatalytic H2 production performance. Nano Lett 12(9):4584–4589CrossRef Zhang J, Yu JG, Jaroniec M, Gong JR (2012) Noble metal-free reduced graphene oxide-ZnxCd1−xS nanocomposite with enhanced solar photocatalytic H2 production performance. Nano Lett 12(9):4584–4589CrossRef
20.
Zurück zum Zitat Li Q, Meng H, Zhou P, Zheng YQ, Wang J, Yu JG, Gong JR (2013) Zn1−xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2 production activity. ACS Catal 3(5):882–889CrossRef Li Q, Meng H, Zhou P, Zheng YQ, Wang J, Yu JG, Gong JR (2013) Zn1−xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2 production activity. ACS Catal 3(5):882–889CrossRef
21.
Zurück zum Zitat Zhang WJ, Zhong XH (2011) Facile synthesis of ZnS–CuInS2-alloyed nanocrystals for a color-tunable fluorochrome and photocatalyst. Inorg Chem 50(9):4065–4072CrossRef Zhang WJ, Zhong XH (2011) Facile synthesis of ZnS–CuInS2-alloyed nanocrystals for a color-tunable fluorochrome and photocatalyst. Inorg Chem 50(9):4065–4072CrossRef
22.
Zurück zum Zitat Zhang GG, Zhang MW, Ye XX, Qiu XQ, Lin S, Wang XC (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26(5):805–809CrossRef Zhang GG, Zhang MW, Ye XX, Qiu XQ, Lin S, Wang XC (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26(5):805–809CrossRef
23.
Zurück zum Zitat Liu J, Liu Y, Liu NY, Han YZ, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang ZH (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225):970–974CrossRef Liu J, Liu Y, Liu NY, Han YZ, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang ZH (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225):970–974CrossRef
24.
Zurück zum Zitat Niu P, Zhang LL, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22(22):4763–4770CrossRef Niu P, Zhang LL, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22(22):4763–4770CrossRef
25.
Zurück zum Zitat Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRef Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRef
26.
Zurück zum Zitat Jagadeeswararao M, Dey S, Nag A, Rao R (2015) Visible light-induced hydrogen generation using colloidal (ZnS)0.4–(AgInS2)0.6 nanocrystals capped by S2− ion. J Mater Chem A 3(16):8276–8279CrossRef Jagadeeswararao M, Dey S, Nag A, Rao R (2015) Visible light-induced hydrogen generation using colloidal (ZnS)0.4–(AgInS2)0.6 nanocrystals capped by S2− ion. J Mater Chem A 3(16):8276–8279CrossRef
27.
Zurück zum Zitat Liu YX, Zhang BS, Luo LF, Chen XY, Wang ZL, Wu EL, Su DS, Huang WX (2015) TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction. Angew Chem Int Ed 54(50):15260–15265CrossRef Liu YX, Zhang BS, Luo LF, Chen XY, Wang ZL, Wu EL, Su DS, Huang WX (2015) TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction. Angew Chem Int Ed 54(50):15260–15265CrossRef
28.
Zurück zum Zitat Li LL, Cheng B, Wang YX, Yu JG (2015) Enhanced photocatalytic H2 production activity of bicomponent NiO/TiO2 composite nanofibers. J Colloid Interface Sci 449:115–121CrossRef Li LL, Cheng B, Wang YX, Yu JG (2015) Enhanced photocatalytic H2 production activity of bicomponent NiO/TiO2 composite nanofibers. J Colloid Interface Sci 449:115–121CrossRef
29.
Zurück zum Zitat Liu G, Niu P, Sun CH, Smith SC, Chen ZG, Lu GQ, Cheng HM (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132(33):11642–11648CrossRef Liu G, Niu P, Sun CH, Smith SC, Chen ZG, Lu GQ, Cheng HM (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132(33):11642–11648CrossRef
30.
Zurück zum Zitat Hong JD, Wang YS, Wang YB, Zhang W, Xu R (2013) Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. ChemSusChem 6(12):2263–2268CrossRef Hong JD, Wang YS, Wang YB, Zhang W, Xu R (2013) Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. ChemSusChem 6(12):2263–2268CrossRef
31.
Zurück zum Zitat Lingampalli SR, Gautam UK, Rao CNR (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ Sci 6:3589CrossRef Lingampalli SR, Gautam UK, Rao CNR (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ Sci 6:3589CrossRef
32.
Zurück zum Zitat Choi J, Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2008) Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. J Mater Chem 18:2371–2378CrossRef Choi J, Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2008) Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. J Mater Chem 18:2371–2378CrossRef
33.
Zurück zum Zitat Shen SL, Ma AP, Tang ZH, Han Z, Wang MJ, Wang Z, Zhi LJ, Yang JH (2015) Facile synthesis of Zn0.5Cd0.5S ultrathin nanorods on reduced graphene oxide for enhanced photocatalytic hydrogen evolution under visible light. ChemCatChem 7(4):609–615CrossRef Shen SL, Ma AP, Tang ZH, Han Z, Wang MJ, Wang Z, Zhi LJ, Yang JH (2015) Facile synthesis of Zn0.5Cd0.5S ultrathin nanorods on reduced graphene oxide for enhanced photocatalytic hydrogen evolution under visible light. ChemCatChem 7(4):609–615CrossRef
34.
Zurück zum Zitat Ma AP, Tang ZH, Shen SL, Zhi LJ, Yang JH (2015) Controlled synthesis of ZnxCd1−xS nanorods and their composite with RGO for high-performance visible-light photocatalysis. RSC Adv 5(35):27829–27836CrossRef Ma AP, Tang ZH, Shen SL, Zhi LJ, Yang JH (2015) Controlled synthesis of ZnxCd1−xS nanorods and their composite with RGO for high-performance visible-light photocatalysis. RSC Adv 5(35):27829–27836CrossRef
35.
Zurück zum Zitat Zhang JS, Chen XF, Takanabe K, Maeda K, Domen K, Epping JD, Fu XZ, Antonietti M, Wang XC (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49(2):441–444CrossRef Zhang JS, Chen XF, Takanabe K, Maeda K, Domen K, Epping JD, Fu XZ, Antonietti M, Wang XC (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49(2):441–444CrossRef
36.
Zurück zum Zitat Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570CrossRef Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570CrossRef
37.
Zurück zum Zitat Zhou CY, Ren ZF, Tan SJ, Ma ZB, Mao XC, Dai DX, Fan HJ, Yang XM, LaRue J, Cooper R, Wodtke AM, Wang Z, Li ZY, Wang B, Yang JL, Hou JG (2010) Site-specific photocatalytic splitting of methanol on TiO2 (110). Chem Sci 1(5):575–580CrossRef Zhou CY, Ren ZF, Tan SJ, Ma ZB, Mao XC, Dai DX, Fan HJ, Yang XM, LaRue J, Cooper R, Wodtke AM, Wang Z, Li ZY, Wang B, Yang JL, Hou JG (2010) Site-specific photocatalytic splitting of methanol on TiO2 (110). Chem Sci 1(5):575–580CrossRef
38.
Zurück zum Zitat Galinska A, Walendziewski J (2005) Photocatalytic water splitting over Pt–TiO2 in the presence of sacrificial reagents. Energy Fuels 19(3):1143–1147CrossRef Galinska A, Walendziewski J (2005) Photocatalytic water splitting over Pt–TiO2 in the presence of sacrificial reagents. Energy Fuels 19(3):1143–1147CrossRef
39.
Zurück zum Zitat Sasikala R, Sudarsan V, Sudakar C, Naik R, Sakuntala T, Bharadwaj SR (2008) Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide. Int J Hydrogen Energy 33(19):4966–4973CrossRef Sasikala R, Sudarsan V, Sudakar C, Naik R, Sakuntala T, Bharadwaj SR (2008) Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide. Int J Hydrogen Energy 33(19):4966–4973CrossRef
40.
Zurück zum Zitat Sasikala R, Shirole A, Sudarsan V, Sakuntala T, Sudakar C, Naik R, Bharadwaj SR (2009) Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: photocatalytic activity for hydrogen generation. Int J Hydrogen Energy 34(9):3621–3630CrossRef Sasikala R, Shirole A, Sudarsan V, Sakuntala T, Sudakar C, Naik R, Bharadwaj SR (2009) Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: photocatalytic activity for hydrogen generation. Int J Hydrogen Energy 34(9):3621–3630CrossRef
41.
Zurück zum Zitat Hesleitner P, Kallay N, Matijevit E (1991) Adsorption at solid/liquid interfaces. 6. The effect of methanol and ethanol on the ionic equilibria at the hematite/water interface. Langmuir 7:178–184CrossRef Hesleitner P, Kallay N, Matijevit E (1991) Adsorption at solid/liquid interfaces. 6. The effect of methanol and ethanol on the ionic equilibria at the hematite/water interface. Langmuir 7:178–184CrossRef
42.
Zurück zum Zitat Chang K, Mei ZW, Wang T, Kang Q, Ouyang SX, Ye JH (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8(7):7078–7087CrossRef Chang K, Mei ZW, Wang T, Kang Q, Ouyang SX, Ye JH (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8(7):7078–7087CrossRef
43.
Zurück zum Zitat Zhang HZ, Chen B, Banfield JF (2010) Particle size and pH effects on nanoparticle dissolution. J Phys Chem C 114(35):14876–14884CrossRef Zhang HZ, Chen B, Banfield JF (2010) Particle size and pH effects on nanoparticle dissolution. J Phys Chem C 114(35):14876–14884CrossRef
Metadaten
Titel
Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts
verfasst von
Mingjie Wang
Shuling Shen
Long Li
Zhihong Tang
Junhe Yang
Publikationsdatum
06.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0752-z

Weitere Artikel der Ausgabe 9/2017

Journal of Materials Science 9/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.