Skip to main content
Log in

Electrospun nickel–tungsten oxide composite fibers as active electrocatalysts for hydrogen evolution reaction

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel crystalline nickel–tungsten oxide composite fibers were synthesized for the first time, to the best of our knowledge, through the electrospinning method using nickel acetate and ammonium metatungstate as precursor solutions. Fibers with five different Ni:W molar ratios, 2:1, 1:1, 1:2, 3:1 and 1:3, were prepared. After calcination, the produced fibers were composed of tungsten oxide (WO3), nickel oxide (NiO) and nickel tungstate (NiWO4). Fiber morphology and structure were studied using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Selected fibers were investigated for electrocatalytic hydrogen evolution reaction (HER) in 0.5 M H2SO4 and 0.1 M KOH electrolytes. The electrospun composite fibers showed good electrocatalytic activity compared to pure NiO and WO3 fibers with an overpotential of 80 mV and 60 mV in acidic and basic media, respectively. Low Tafel slopes were also registered as 50.27 mV/dec and 41.29 mV/dec in H2SO4 and KOH, respectively. The presence of NiWO4 compound, formed during the composite fabrication, was responsible for improving the electrocatalytic performance of the fibrous catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    Article  Google Scholar 

  2. Wu H, Hu L, Rowell MW, Kong D, Cha JJ, McDonough JR, Zhu J, Yang Y, McGehee MD, Cui Y (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10:4242–4248

    Article  Google Scholar 

  3. Anis SF, Khalil A, Singaravel G, Hashaikeh R (2016) A review on the fabrication of zeolite and mesoporous inorganic nanofibers formation for catalytic applications. Microporous Mesoporous Mater 236:176–192

    Article  Google Scholar 

  4. Hou H, Dong C, Wang L, Gao F, Wei G, Zheng J, Cheng X, Tang B, Yang W (2013) Electrospinning graphite/SiC mesoporous hybrid fibers with tunable structures. CrystEngComm 15:2002–2008

    Article  Google Scholar 

  5. Liu J, Jiang G, Liu Y, Di J, Wang Y, Zhao Z, Sun Q, Xu C, Gao J, Duan A (2014) Hierarchical macro–meso–microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability. Sci Rep 4:7276

    Article  Google Scholar 

  6. Pham-Huu C, Winé G, Tessonnier J-P, Ledoux M-J, Rigolet S, Marichal C (2004) BETA zeolite nanowire synthesis under non-hydrothermal conditions using carbon nanotubes as template. Carbon 42:1941–1946

    Article  Google Scholar 

  7. Khalil A, Singh Lalia B, Hashaikeh R, Khraisheh M (2013) Electrospun metallic nanowires: synthesis, characterization, and applications. J Appl Phys 114:171301–171316

    Article  Google Scholar 

  8. Singh N, Mondal K, Misra M, Sharma A, Gupta RK (2016) Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications. RSC Adv 6:48109–48119

    Article  Google Scholar 

  9. Leon N, Figueroa G, Wang Y, Ramos I, Furlan R, Pinto N, Santiago-Aviles JJ (2005) Electrospun tin oxide nanofibers, In: Microtechnologies for the New Millennium. International Society for Optics and Photonics, pp 21–28

  10. Wang G, Huang X, Dudley M, Gouma P-I, Yang X (2005) Fabrication and characterization of molybdenum oxide nanofibers by electrospinning. In: MRS proceedings, Cambridge University Press, pp 0900-O0903-0922

  11. Baranowska-Korczyc A, Fronc K, Klopotowski L, Reszka A, Sobczak K, Paszkowicz W, Dybko K, Dluzewski P, Kowalski BJ, Elbaum D (2013) Light- and environment-sensitive electrospun ZnO nanofibers. RSC Adv 3:5656–5662

    Article  Google Scholar 

  12. An X, Yu JC, Wang Y, Hu Y, Yu X, Zhang G (2012) WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J Mater Chem 22:8525–8531

    Article  Google Scholar 

  13. Liu H, Wang X, He G, Lin Y, Wei J, Zheng J, Zheng G, Sun D (2013) Electrospun nickel oxide nanofibers for gas sensor application. In: 2013 8th IEEE international conference on Nano/micro engineered and molecular systems (NEMS). IEEE, pp 377–380

  14. Huang H, Li J, Li M, Min E, Nie H, Ran G, Shi Y, Tao Z, Wang Z, Xia G (1999) Catalyst for hydrotreating light oil distillates and preparation thereof. Google Patents

  15. Cristino V, Caramori S, Argazzi R, Meda L, Marra GL, Bignozzi CA (2011) Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes. Langmuir 27:7276–7284

    Article  Google Scholar 

  16. Yan X, Tian L, Chen X (2015) Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J Power Sources 300:336–343

    Article  Google Scholar 

  17. Lalia BS, Khalil A, Shah T, Hashaikeh R (2015) Flexible carbon nanostructures with electrospun nickel oxide as a lithium-ion battery anode. Ionics 21:2755–2762

    Article  Google Scholar 

  18. Lalia BS, Shah T, Hashaikeh R (2015) Microbundles of carbon nanostructures as binder free highly conductive matrix for LiFePO4 battery cathode. J Power Sources 278:314–319

    Article  Google Scholar 

  19. Chekin F, Bagherib S, Hamidb SBA (2013) Synthesis of tungsten oxide nanorods by the controlling precipitation reaction: application for hydrogen evolution reaction on a WO3 nanorods/carbon nanotubes composite film modified electrode. J Chin Chem Soc 60:447–451

    Article  Google Scholar 

  20. Yu X, Hua T, Liu X, Yan Z, Xu P, Du P (2014) Nickel-based thin film on multiwalled carbon nanotubes as an efficient bifunctional electrocatalyst for water splitting. ACS Appl Mater Interfaces 6:15395–15402

    Article  Google Scholar 

  21. Mohamed MM, Ahmed SA, Khairou KS (2014) Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: effect of template and synthesis conditions. Appl Catal B 150:63–73

    Article  Google Scholar 

  22. Kuzmin A, Kalinko A, Evarestov R (2011) First-principles LCAO study of phonons in NiWO4. Open Phys 9:502–509

    Article  Google Scholar 

  23. Bi Y, Nie H, Li D, Zeng S, Yang Q, Li M (2010) NiWO4 nanoparticles: a promising catalyst for hydrodesulfurization. Chem Commun 46:7430–7432

    Article  Google Scholar 

  24. Mani S, Vediyappan V, Chen S-M, Madhu R, Pitchaimani V, Chang J-Y, Liu S-B (2016) Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors. Sci Rep 6:24128

    Article  Google Scholar 

  25. Mancheva MN, Iordanova RS, Klissurski DG, Tyuliev GT, Kunev BN (2007) Direct mechanochemical synthesis of nanocrystalline NiWO4. J Phys Chem C 111:1101–1104

    Article  Google Scholar 

  26. Talebi R (2016) Simple sonochemical synthesis and characterization of nickel tungstate nanoparticles and its photocatalyst application. J Mater Sci Mater Electron 27:3565–3569. doi:10.1007/s10854-015-4192-8

    Article  Google Scholar 

  27. Zhu J, Li W, Li J, Li Y, Hu H, Yang Y (2013) Photoelectrochemical activity of NiWO4/WO3 heterojunction photoanode under visible light irradiation. Electrochim Acta 112:191–198

    Article  Google Scholar 

  28. Vesborg PCK, Seger B, Chorkendorff I (2015) Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett 6:951–957

    Article  Google Scholar 

  29. Li YH, Liu PF, Pan LF, Wang HF, Yang ZZ, Zheng LR, Hu P, Zhao HJ, Gu L, Yang HG (2015) Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat Commun 6:8064

    Article  Google Scholar 

  30. Shah TK, Malecki HC, Basantkumar RR, Liu H, Fleischer CA, Sedlak JJ, Patel JM, Burgess WP, Goldfinger JM (2013) Carbon nanostructures and methods of making the same. U.S. Patent Application 14/035,856, 24 September 2013

  31. Anis SF, Hashaikeh R (2016) Electrospun zeolite-Y fibers: fabrication and morphology analysis. Microporous Mesoporous Mater 233:78–86

    Article  Google Scholar 

  32. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    Article  Google Scholar 

  33. Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  34. Gražulis S, Chateigner D, Downs RT, Yokochi A, Quirós M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database—an open-access collection of crystal structures. J Appl Crystallogr 42:726–729

    Article  Google Scholar 

  35. Gerand B, Nowogrocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten trioxide. J Solid State Chem 29:429–434

    Article  Google Scholar 

  36. Gong M, Zhou W, Tsai M-C, Zhou J, Guan M, Lin M-C, Zhang B, Hu Y, Wang D-Y, Yang J (2014) Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun 5:4695

    Article  Google Scholar 

  37. Zheng H, Mathe M (2011) Hydrogen evolution reaction on single crystal WO3/C nanoparticles supported on carbon in acid and alkaline solution. Int J Hydrogen Energy 36:1960–1964

    Article  Google Scholar 

  38. Xu YF, Gao MR, Zheng YR, Jiang J, Yu SH (2013) Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew Chem Int Ed 52:8546–8550

    Article  Google Scholar 

  39. Youn DH, Han S, Kim JY, Kim JY, Park H, Choi SH, Lee JS (2014) Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support. ACS Nano 8:5164–5173

    Article  Google Scholar 

  40. Lalia BS, Ahmed FE, Shah T, Hilal N, Hashaikeh R (2015) Electrically conductive membranes based on carbon nanostructures for self-cleaning of biofouling. Desalination 360:8–12

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Lockheed Martin for providing the CNS material and Takreer Research Center for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Hashaikeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anis, S.F., Lalia, B.S., Mostafa, A.O. et al. Electrospun nickel–tungsten oxide composite fibers as active electrocatalysts for hydrogen evolution reaction. J Mater Sci 52, 7269–7281 (2017). https://doi.org/10.1007/s10853-017-0964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0964-2

Keywords

Navigation