Skip to main content

Advertisement

Log in

Novel graphene nanosheet-wrapped polyaniline rectangular-like nanotubes for flexible all-solid-state supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For the development of high-capacity flexible supercapacitors (SCs), a reduced graphene oxide/polyaniline (rGO/PANI) hybrid film with a hierarchical three-dimensional structure, in which PANI nanotubes are sandwiched in rGO nanosheet skeleton, is designed and prepared via vacuum filtration. The rectangular-like PANI nanotubes have a hollow structure with a wall thickness of ca. 100 nm, which can increase the accessible surface area and minimize the ion transfer distance. Additionally, rGO nanosheets act as conductive skeleton to improve the conductivity of active materials and provide some capacitance due to EDLC properties of rGO. As a result, the composite electrode shows a remarkable specific capacitance of 850 F g−1 at 1 A g−1, and superior cycling stability with only 6.8% of the specific capacitance loss after 10000 cycles. The assembled flexible all-solid-state SCs give a high specific capacitance of 208 F g−1 (1 A g−1) and a good rate capacitance, as well as outstanding cycling stability with 87.3% of the initial capacitance retained after 10000 cycles. Furthermore, no structure failure or performance loss at various bending angles is observed. This method may provide a new route for the fabrication of flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jin D, Chen S, Wang B, Wang L, Wang L, Xi Z (2017) Stretchable composite electrode based on carbon network with interwoven structure for flexible supercapacitors. J Mater Sci 52:2849. doi:10.1007/s10853-016-0576-2

    Article  Google Scholar 

  2. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energ Mater 4:1300816

    Article  Google Scholar 

  3. Peng X, Peng L, Wu C, Xie Y (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43:3303

    Article  Google Scholar 

  4. Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energ Environ Sci 7:2160

    Article  Google Scholar 

  5. Kai Guo NY, Hou Zhiqiang, Lintong Hu, Ma Ying, Li Huiqiao, Zhai Tianyou (2017) Smart supercapacitors with deformable and healable functions. J Mater Chem A 5:16

    Article  Google Scholar 

  6. Su H, Zhu P, Zhang L, Zeng W, Zhou F, Li G, Li T, Wang Q, Sun R, Wong C (2016) Low cost, high performance flexible asymmetric supercapacitor based on modified filter paper and an ultra-fast packaging technique†. RSC Adv 5:83546

    Google Scholar 

  7. Yang P, Mai W (2014) Flexible solid-state electrochemical supercapacitors. Nano Energ 8:274

    Article  Google Scholar 

  8. Javed MS, Jiang Z, Zhang C, Chen L, Hu C, Gu X (2016) A high-performance flexible solid-state supercapacitor based on Li-ion intercalation into tunnel-structure iron sulfide. Electrochim Acta 219:742

    Article  Google Scholar 

  9. Zhi J, Yang C, Lin T et al (2016) Flexible all solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent. Nanoscale 8:4054

    Article  Google Scholar 

  10. Yue-E Miao JY, Huang Yunpeng, Fan Wei, Liu Tianxi (2015) Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. RSC Adv 5:26189

    Article  Google Scholar 

  11. Ma W, Chen S, Yang S et al (2017) Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113:151

    Article  Google Scholar 

  12. Lu X, Dou H, Gao B et al (2011) A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim Acta 56:5115

    Article  Google Scholar 

  13. Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206

    Article  Google Scholar 

  14. Cheng Q, Tang J, Shinya N, Qin L-C (2013) Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J Power Sources 241:423

    Article  Google Scholar 

  15. Xu S, Li X, Yang Z et al (2016) Nanofoaming to boost the electrochemical performance of Ni@Ni(OH)2 nanowires for ultrahigh volumetric supercapacitors. ACS Appl Mater Inter 8:27868

    Article  Google Scholar 

  16. Li J, Xie H, Li Y, Liu J, Li Z (2011) Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J Power Sour 196:10775

    Article  Google Scholar 

  17. Shi Y, Pan L, Liu B et al (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086

    Article  Google Scholar 

  18. Hung P-J, Chang K-H, Lee Y-F, Hu C-C, Lin K-M (2010) Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows. Electrochim Acta 55:6015

    Article  Google Scholar 

  19. Lin H, Huang Q, Wang J et al (2016) Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim Acta 191:444

    Article  Google Scholar 

  20. Miao F, Shao C, Li X et al (2016) Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. Energy 95:233

    Article  Google Scholar 

  21. Wang X, Gao K, Shao Z, Peng X, Wu X, Wang F (2014) Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J Sour 249:148

    Article  Google Scholar 

  22. Zhao Z, Xie Y (2017) Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid. J Power Sour 337:54

    Article  Google Scholar 

  23. Cheng H, Dong Z, Hu C et al (2013) Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5:3428

    Article  Google Scholar 

  24. Wang T, Huang D, Yang Z et al (2015) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 8:95

    Article  Google Scholar 

  25. Zhang LL, Zhao X, Stoller MD et al (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12:1806

    Article  Google Scholar 

  26. Wu ZS, Parvez K, Feng X, Mullen K (2013) Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat Commun 4:2487

    Google Scholar 

  27. Yuping Duan JL, Zhang Yahong, Wang Tongmin (2016) First-principles calculations of graphene-based polyaniline nano-hybrids for insight of electromagnetic properties and electronic structures. RSC Adv 6:73915

    Article  Google Scholar 

  28. Hu N, Zhang L, Yang C et al (2016) Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Sci Rep 6:19777

    Article  Google Scholar 

  29. Guoxiang Xin YW, Liu Xiaoxu, Zhang Jinhui, Wang Yafei, Huang Junjie, Zang Jianbing (2015) Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor. Electrochim Acta 167:254

    Article  Google Scholar 

  30. Yue-E Miao JY, Huang Yunpeng, Fan Wei, Liu Tianxi (2015) Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. RSC Adv 5:26189

    Article  Google Scholar 

  31. Wang L, Lu X, Lei S, Song Y (2014) Graphene-based polyaniline nanocomposites: preparation, properties and applications. J Mater Chem A 2:4491

    Article  Google Scholar 

  32. Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158

    Article  Google Scholar 

  33. Jiande Wang HX, Peng Tongjiang, Sun Hongjuan, Zheng Fengxian (2015) Three-dimensional graphene-wrapped PANI nanofiber composite as electrode material for supercapacitors. RSC Adv 5:13607

    Article  Google Scholar 

  34. Xiaoqing Jiang SS, Fukumoto Saki, Imae Ichiro, Komaguchi Kenji, Yano Jun, Mizota Haruo, Harima Yutaka (2014) An easy one-step electrosynthesis of graphene/polyaniline composites and electrochemical capacitor. Carbon 11:662

    Article  Google Scholar 

  35. Zhou C, Han J, Guo R (2009) Polyaniline fan-like architectures of rectangular sub-microtubes synthesized in dilute inorganic Acid solution. Macromol Rapid Commun 30:182

    Article  Google Scholar 

  36. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ASC Nano 4(8):4806–4814

    Article  Google Scholar 

  37. Fan H, Zhao N, Wang H, Xu J, Pan F (2014) 3D conductive network-based free-standing PANI–RGO–MWNTs hybrid film for high-performance flexible supercapacitor. J Mater Chem A 2:12340

    Article  Google Scholar 

  38. Li M, Huang X, Wu C, Xu H, Jiang P, Tanaka T (2012) Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant. J Mater Chem 22:23477

    Article  Google Scholar 

  39. Huang X, Hu N, Gao R et al (2012) Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem 22:22488

    Article  Google Scholar 

  40. Chen W, Rakhi RB, Alshareef HN (2013) Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte. Nanoscale 5:4134

    Article  Google Scholar 

  41. Wang S, Ma L, Gan M et al (2015) Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J Power Sour 299:347

    Article  Google Scholar 

  42. Feng X-M, Li R-M, Ma Y-W et al (2011) One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21:2989

    Article  Google Scholar 

  43. Zhong M, Song Y, Li Y et al (2012) Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application. J Power Sour 217:6

    Article  Google Scholar 

  44. Luo Y, Kong D, Jia Y et al (2013) Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. RSC Adv 3:5851

    Article  Google Scholar 

  45. Ramadoss A, Saravanakumar B, Kim SJ (2015) Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energ 15:587

    Article  Google Scholar 

  46. Yuxi Xu ZL, Huang Xiaoqing, Yuan Liu Yu, Huang Xiangfeng Duan (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042

    Article  Google Scholar 

  47. Anothumakkool B, Torris ATA, Bhange SN, Unni SM, Badiger MV, Kurungot S (2013) Design of a high performance thin all-solid-state supercapacitor mimicking the active interface of its liquid-state counterpart. ACS Appl Mater Inter 5:13397

    Article  Google Scholar 

  48. Ramadoss A, Yoon K-Y, Kwak M-J, Kim S-I, Ryu S-T, Jang J-H (2017) Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J Power Sour 337:159

    Article  Google Scholar 

  49. Li D, Li Y, Feng Y, Feng W (2015) Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J Mater Chem A 3:2135

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the link project of the National Natural Science Foundation of China and Guangdong Province (No. U1401246), the National Natural Science Foundation of China (Grant No. 51276044), by the Science and Technology Program of Guangdong Province of China (Grant Nos. 2014B010106005, 2015B010135011, 2015A050502047, 2016A020221031, 2014A010105047), and by the Science and Technology Program of Guangzhou City of China (Grant Nos. 201508030018, 2016201604030040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1769 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Zhang, H., Liao, H. et al. Novel graphene nanosheet-wrapped polyaniline rectangular-like nanotubes for flexible all-solid-state supercapacitors. J Mater Sci 52, 10981–10992 (2017). https://doi.org/10.1007/s10853-017-1273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1273-5

Keywords

Navigation