Skip to main content

Advertisement

Log in

Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) and carbon nanotubes (CNTs) are introduced into activated carbon fiber felt (ACFF) to fabricate ACFF/PANI/CNT composite textiles as free-standing and flexible electrodes of supercapacitors. ACFF is an electrochemically active substrate with an electric double-layer capacitance of 2442 mF/cm2, and deposited PANI further offers a large pseudocapacitance. Meanwhile, CNTs optimize the electrical property of the ACFF/PANI/CNT textiles. Consequently, areal capacitance, energy density and power density of the composite textiles are as large as 5611 mF/cm2, 185 μWh/cm2 and 4517 μW/cm2, respectively, much higher than those of many previously reported flexible supercapacitor electrodes. Besides, the textiles display good rate capability, cycling stability and mechanical flexibility. Overall, our flexible textile electrodes are promising to be utilized to power wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dong L, Xu C, Li Y, Huang Z, Kang F, Yang QH, Zhao X (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4:4659–4685

    Article  Google Scholar 

  2. Zhang Y, Wang Y, Cheng T, Lai W, Pang H, Huang W (2015) Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev 44:5181–5199

    Article  Google Scholar 

  3. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884

    Article  Google Scholar 

  4. Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25:5965–5970

    Article  Google Scholar 

  5. Cai X, Peng M, Yu X, Fu Y, Zou D (2014) Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J Mater Chem A 2:1184–1200

    Article  Google Scholar 

  6. Chang HH, Chang CK, Tsai YC, Liao CS (2012) Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50:2331–2336

    Article  Google Scholar 

  7. Fu Y, Cai X, Wu H, Lv Z, Hou S, Peng M, Yu X, Zou D (2012) Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater 24:5713–5718

    Article  Google Scholar 

  8. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA, Pham DT, Lee JH, Kim SW, Lee YH (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947

    Article  Google Scholar 

  9. Li Y, Sheng K, Yuan W, Shi G (2013) A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem Commun 49:291–293

    Article  Google Scholar 

  10. Wang D, Li J, Zhang D, Liu T, Zhang N, Chen L, Liu X, Ma R, Qiu G (2016) Layered Co-Mn hydroxide nanoflakes grown on carbon cloth as binder-free flexible electrodes for supercapacitors. J Mater Sci 51:3784–3792. doi:10.1007/s10853-015-9696-3

    Article  Google Scholar 

  11. Chang YH, Lin CT, Chen TY, Hsu CL, Lee YH, Zhang W, Wei KH, Li LJ (2013) Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv Mater 25:756–760

    Article  Google Scholar 

  12. Huang H, Yao J, Li L, Zhu F, Liu Z, Zeng X, Yu X, Huang Z (2016) Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing-thawing method as self-supported electrode for supercapacitors. J Mater Sci 51:8728–8736. doi:10.1007/s10853-016-0137-8

    Article  Google Scholar 

  13. Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7:3163–3168

    Article  Google Scholar 

  14. Lei D, Song KH, Li XD, Kim HY, Kim BS (2017) Nanostructured polyaniline/kenaf-derived 3D porous carbon materials with high cycle stability for supercapacitor electrodes. J Mater Sci 52:2158–2168. doi:10.1007/s10853-016-0504-5

    Article  Google Scholar 

  15. Chen J, Liu Y, Li W, Wu X, Xu L, Yang H (2015) Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. J Mater Sci 50:5466–5474. doi:10.1007/s10853-015-9092-z

    Article  Google Scholar 

  16. Chen TL, Elabd YA (2017) Hybrid-capacitors with polyaniline/carbon electrodes fabricated via simultaneous electrospinning/electrospraying. Electrochim Acta 229:65–72

    Article  Google Scholar 

  17. Dong L, Liang G, Xu C, Liu W, Pan ZZ, Zhou E, Kang F, Yang QH (2017) Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34:242–248

    Article  Google Scholar 

  18. Horng YY, Lu YC, Hsu YK, Chen CC, Chen LC, Chen KH (2010) Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J Power Sources 195:4418–4422

    Article  Google Scholar 

  19. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors. J Phys Chem C 115:23584–23590

    Article  Google Scholar 

  20. He X, Gao B, Wang G, Wei J, Zhao C (2013) A new nanocomposite: carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochim Acta 111:210–215

    Article  Google Scholar 

  21. Lei D, Devarayan K, Seo MK, Kim YG, Kim BS (2015) Flexible polyaniline-decorated carbon fiber nanocomposite mats as supercapacitors. Mater Lett 154:173–176

    Article  Google Scholar 

  22. Ma J, Tang S, Syed JA, Meng X (2016) Asymmetric hybrid capacitors based on novel bearded carbon fiber cloth-pinhole polyaniline electrodes with excellent energy density. RSC Adv 6:82995–83002

    Article  Google Scholar 

  23. Dong L, Xu C, Yang Q, Fang J, Li Y, Kang F (2015) High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. J Mater Chem A 3:4729–4737

    Article  Google Scholar 

  24. Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6:2698–2705

    Article  Google Scholar 

  25. Dong L, Xu C, Li Y, Wu C, Jiang B, Yang Q, Zhou E, Kang F, Yang QH (2016) Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv Mater 28:1675–1681

    Article  Google Scholar 

  26. Dong L, Yang Q, Xu C, Li Y, Yang D, Hou F, Yin H, Kang F (2015) Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon 90:164–171

    Article  Google Scholar 

  27. Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733

    Article  Google Scholar 

  28. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J Phys Chem B 109:7330–7338

    Article  Google Scholar 

  29. Wu TH, Hsu CT, Hu CC, Hardwick LJ (2013) Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors. J Power Sources 242:289–298

    Article  Google Scholar 

  30. Wang JG, Yang Y, Huang ZH, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon 61:190–199

    Article  Google Scholar 

  31. Chen WC, Wen TC (2003) Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. J Power Sources 117:273–282

    Article  Google Scholar 

  32. Dong L, Xu C, Li Y, Pan Z, Liang G, Zhou E, Kang F, Yang QH (2016) Breathable and wearable energy storage based on highly flexible paper electrodes. Adv Mater 28:9313–9319

    Article  Google Scholar 

  33. Weng Z, Su Y, Wang DW, Li F, Du J, Cheng HM (2011) Graphene-cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922

    Article  Google Scholar 

  34. Meng C, Liu C, Fan S (2009) Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem Commun 11:186–189

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate Prof. Juntao Li and Zhengliang Gong (College of Energy, Xiamen University) giving constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, C. Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes. J Mater Sci 52, 12348–12357 (2017). https://doi.org/10.1007/s10853-017-1291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1291-3

Keywords

Navigation