Skip to main content
Erschienen in: Journal of Materials Science 22/2017

14.08.2017 | Composites

Investigation of the conductive network formation of polypropylene/graphene nanoplatelets composites for different platelet sizes

verfasst von: Suihua He, Jingjing Zhang, Xiaoting Xiao, Xinmi Hong, Yongjian Lai

Erschienen in: Journal of Materials Science | Ausgabe 22/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrical percolating composites of polypropylene (PP) filled with five different graphene nanoplatelet (GNP) fillers and their hybrid systems were prepared using melt blending. The effect of GNP size and their hybrid system on the conductive network formation is investigated. The formation of a conductive network can be affected by the structure and morphology of GNPs of different sizes. The GNPs with a larger diameter and smaller thickness are beneficial to produce a conductive network. The conductivity of the PP/GNP composite depends on the aspect ratio of the GNPs when the content exceeds the percolation threshold. However, when the GNP content is near the percolation threshold, both diameter and dispersion of the GNPs can affect the conductivity significantly, and electron tunneling theory should be taken in account. The highest electrical conductivity was obtained for a PP/large-diameter GNPs/medium-diameter GNPs hybrid system. To explain the hybrid system, an “island-bridge”-structured conductive network is proposed. The better conducting network may be due to scattered “islands” that connect with each other via a long “bridge.” This bridge links the islands for better charge transport across the GNPs and the obstruction of PP matrix, which enables the formation of a better conducting network. Even though GNPs with small diameter show perfect dispersion, they contribute less to the formation of a conductive network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Müller MT, Pötschke P, Voit B (2015) Dispersion of carbon nanotubes into polyethylene by an additive assisted one-step melt mixing approach. Polymer 66:210–221CrossRef Müller MT, Pötschke P, Voit B (2015) Dispersion of carbon nanotubes into polyethylene by an additive assisted one-step melt mixing approach. Polymer 66:210–221CrossRef
2.
Zurück zum Zitat Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1(1):e1400129–e1400129CrossRef Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1(1):e1400129–e1400129CrossRef
3.
Zurück zum Zitat Battisti A, Skordos AA, Partridge IK (2010) Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Technol 70(4):633–637CrossRef Battisti A, Skordos AA, Partridge IK (2010) Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Technol 70(4):633–637CrossRef
4.
Zurück zum Zitat Ahmadi-Moghadam B, Taheri F (2014) Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J Mater Sci 49(18):6180–6190. doi:10.1007/s10853-014-8332-y CrossRef Ahmadi-Moghadam B, Taheri F (2014) Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J Mater Sci 49(18):6180–6190. doi:10.​1007/​s10853-014-8332-y CrossRef
5.
Zurück zum Zitat Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS et al (2011) Inkjet-printed graphene electronics. ACS Nano 6(4):2992–3006CrossRef Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS et al (2011) Inkjet-printed graphene electronics. ACS Nano 6(4):2992–3006CrossRef
6.
Zurück zum Zitat Chen G, Xu W, Zhu D (2017) Recent advances in organic polymer thermoelectric composites. J Mater Chem C 5(18):4350–4360CrossRef Chen G, Xu W, Zhu D (2017) Recent advances in organic polymer thermoelectric composites. J Mater Chem C 5(18):4350–4360CrossRef
7.
Zurück zum Zitat Zhang Z, Chen G, Wang H et al (2015) Template-directed in situ polymerization preparation of nanocomposites of PEDOT: PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property. Chem Asian J 10(1):149–153CrossRef Zhang Z, Chen G, Wang H et al (2015) Template-directed in situ polymerization preparation of nanocomposites of PEDOT: PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property. Chem Asian J 10(1):149–153CrossRef
8.
Zurück zum Zitat Cao WQ, Wang XX, Yuan J, Wang W, Cao MS (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3(38):10017–10022CrossRef Cao WQ, Wang XX, Yuan J, Wang W, Cao MS (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3(38):10017–10022CrossRef
9.
Zurück zum Zitat Wen B, Cao M, Lu M, Cao W, Shi H, Liu J et al (2014) Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26(21):3484–3489CrossRef Wen B, Cao M, Lu M, Cao W, Shi H, Liu J et al (2014) Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26(21):3484–3489CrossRef
10.
Zurück zum Zitat Smith JG, Delozier DM, Connell JW, Watson KA (2004) Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation. Polymer 45(18):6133–6142CrossRef Smith JG, Delozier DM, Connell JW, Watson KA (2004) Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation. Polymer 45(18):6133–6142CrossRef
11.
Zurück zum Zitat Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black–polymer composites. Carbon 40(2):139–143CrossRef Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black–polymer composites. Carbon 40(2):139–143CrossRef
12.
Zurück zum Zitat Li ZM, Xu XB, Lu A, Shen KZ, Huang R, Yang MB (2004) Carbon black/poly(ethylene terephthalate)/polyethylene composite with electrically conductive in situ microfiber network. Carbon 42(2):428–432CrossRef Li ZM, Xu XB, Lu A, Shen KZ, Huang R, Yang MB (2004) Carbon black/poly(ethylene terephthalate)/polyethylene composite with electrically conductive in situ microfiber network. Carbon 42(2):428–432CrossRef
13.
Zurück zum Zitat Drubetski M, Siegmann A, Narkis M (2005) Hybrid particulate and fibrous injection molded composites: carbon black/carbonfiber/polypropylene systems. Polym Compos 26(4):454–464CrossRef Drubetski M, Siegmann A, Narkis M (2005) Hybrid particulate and fibrous injection molded composites: carbon black/carbonfiber/polypropylene systems. Polym Compos 26(4):454–464CrossRef
14.
Zurück zum Zitat Paglicawan MA, Kim JK, Bang DS (2010) Dispersion of multiwalled carbon nanotubes in thermoplastic elastomer gels: morphological, rheological, and electrical properties. Polym Compos 31(2):210–217CrossRef Paglicawan MA, Kim JK, Bang DS (2010) Dispersion of multiwalled carbon nanotubes in thermoplastic elastomer gels: morphological, rheological, and electrical properties. Polym Compos 31(2):210–217CrossRef
15.
Zurück zum Zitat Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495CrossRef Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495CrossRef
17.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef
18.
Zurück zum Zitat Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213(10–11):1060–1077CrossRef Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213(10–11):1060–1077CrossRef
19.
Zurück zum Zitat Rajagopal C, Satyam M (1978) Studies on electrical conductivity of insulator–conductor composites. J Appl Phys 49(11):5536–5542CrossRef Rajagopal C, Satyam M (1978) Studies on electrical conductivity of insulator–conductor composites. J Appl Phys 49(11):5536–5542CrossRef
20.
Zurück zum Zitat Sheng P, Sichel EK, Gittleman JI (1978) Fluctuation-induced tunneling conducting in carbon-polyvinylchloride composites. Phys Rev Lett 40(18):1197–1200CrossRef Sheng P, Sichel EK, Gittleman JI (1978) Fluctuation-induced tunneling conducting in carbon-polyvinylchloride composites. Phys Rev Lett 40(18):1197–1200CrossRef
21.
Zurück zum Zitat Menzer K, Krause B, Boldt R, Kretzschmar B, Weidisch R et al (2011) Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites. Compos Sci Technol 71(16):1936–1943CrossRef Menzer K, Krause B, Boldt R, Kretzschmar B, Weidisch R et al (2011) Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites. Compos Sci Technol 71(16):1936–1943CrossRef
22.
Zurück zum Zitat Zhang J, He S, Lv P, Chen Y (2016) Processing–morphology–property relationships of polypropylene–graphene nanoplatelets nanocomposites. J Appl Polym Sci 134(8):44486-44495 Zhang J, He S, Lv P, Chen Y (2016) Processing–morphology–property relationships of polypropylene–graphene nanoplatelets nanocomposites. J Appl Polym Sci 134(8):44486-44495
23.
Zurück zum Zitat Guehenec M, Tishkova V, Dagreou S, Leonardi F, Derailet C, Puech P et al (2013) The effect of twin screw extrusion on structural, electrical, and rheological properties in carbon nanotube poly-ether-ether-ketone nanocomposites. J Appl Polym Sci 129(5):2527–2535CrossRef Guehenec M, Tishkova V, Dagreou S, Leonardi F, Derailet C, Puech P et al (2013) The effect of twin screw extrusion on structural, electrical, and rheological properties in carbon nanotube poly-ether-ether-ketone nanocomposites. J Appl Polym Sci 129(5):2527–2535CrossRef
24.
Zurück zum Zitat Müller MT, Krause B, Kretzschmar B, Pötschke P (2011) Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties. Compos Sci Technol 71(13):1535–1542CrossRef Müller MT, Krause B, Kretzschmar B, Pötschke P (2011) Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties. Compos Sci Technol 71(13):1535–1542CrossRef
25.
Zurück zum Zitat Kasaliwal GR, Pegel S, Göldel A et al (2010) Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer 51(12):2708–2720CrossRef Kasaliwal GR, Pegel S, Göldel A et al (2010) Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer 51(12):2708–2720CrossRef
26.
Zurück zum Zitat Fukushima H, Drzal LT (2006) Nylon-exfoliated graphite nanoplatelet (xGnP) nanocomposites with enhanced mechanical, electrical and thermal properties, vol 1. NSTI Nanotech, PP 282–285. http://www.nsti.org Fukushima H, Drzal LT (2006) Nylon-exfoliated graphite nanoplatelet (xGnP) nanocomposites with enhanced mechanical, electrical and thermal properties, vol 1. NSTI Nanotech, PP 282–285. http://​www.​nsti.​org
27.
Zurück zum Zitat Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67(10):2045–2051CrossRef Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67(10):2045–2051CrossRef
28.
Zurück zum Zitat Wu H, Drzal LT (2013) Graphene nanoplatelet-polyetherimide composites: revealed morphology and relation to properties. J Appl Polym Sci 130(6):4081–4089 Wu H, Drzal LT (2013) Graphene nanoplatelet-polyetherimide composites: revealed morphology and relation to properties. J Appl Polym Sci 130(6):4081–4089
29.
Zurück zum Zitat Dang ZM, Shehzad K, Zha JW, Mujahid A, Hussain T, Nie J et al (2011) Complementary percolation characteristics of carbon fillers based electrically percolative thermoplastic elastomer composites. Compos Sci Technol 72(1):28–35CrossRef Dang ZM, Shehzad K, Zha JW, Mujahid A, Hussain T, Nie J et al (2011) Complementary percolation characteristics of carbon fillers based electrically percolative thermoplastic elastomer composites. Compos Sci Technol 72(1):28–35CrossRef
30.
Zurück zum Zitat Wen M, Sun X, Su L, Shen J, Li J, Guo S (2012) The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7):1602–1610CrossRef Wen M, Sun X, Su L, Shen J, Li J, Guo S (2012) The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7):1602–1610CrossRef
31.
Zurück zum Zitat Mayoral B, Harkin-Jones E, Khanam NP, Al-Maadeed M, Ouederni M et al (2015) Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites. RSC Adv 5(65):52395–52409CrossRef Mayoral B, Harkin-Jones E, Khanam NP, Al-Maadeed M, Ouederni M et al (2015) Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites. RSC Adv 5(65):52395–52409CrossRef
32.
Zurück zum Zitat Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos Part A Appl Sci Manuf 38(7):1675–1682CrossRef Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos Part A Appl Sci Manuf 38(7):1675–1682CrossRef
33.
Zurück zum Zitat Wu H, Drzal LT (2012) Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50(3):1135–1145CrossRef Wu H, Drzal LT (2012) Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50(3):1135–1145CrossRef
34.
Zurück zum Zitat Vallés C, Abdelkader AM, Young RJ, Kinloch IA (2015) The effect of flake diameter on the reinforcement of few-layer graphene–PMMA composites. Compos Sci Technol 111:17–22CrossRef Vallés C, Abdelkader AM, Young RJ, Kinloch IA (2015) The effect of flake diameter on the reinforcement of few-layer graphene–PMMA composites. Compos Sci Technol 111:17–22CrossRef
35.
Zurück zum Zitat Brown RP, Brandrup PJ, Immergut EH (1990) Polymer handbook. Polym Test 9(4):281–283 Brown RP, Brandrup PJ, Immergut EH (1990) Polymer handbook. Polym Test 9(4):281–283
36.
Zurück zum Zitat Liu W, Fukushima H, Drzal LT (2010) Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett 11(4):279–284CrossRef Liu W, Fukushima H, Drzal LT (2010) Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett 11(4):279–284CrossRef
37.
Zurück zum Zitat Zhang HB, Zheng WG, Yan Q, Yanga Y, Wanga JW, Lu ZH et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196CrossRef Zhang HB, Zheng WG, Yan Q, Yanga Y, Wanga JW, Lu ZH et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196CrossRef
38.
Zurück zum Zitat Zhong J, Isayev AI (2015) Properties of polyetherimide/graphite composites prepared using ultrasonic twin-screw extrusion. J Appl Polym Sci 132(5):41397–41407CrossRef Zhong J, Isayev AI (2015) Properties of polyetherimide/graphite composites prepared using ultrasonic twin-screw extrusion. J Appl Polym Sci 132(5):41397–41407CrossRef
39.
Zurück zum Zitat Xu S, Wen M, Li J, Guo S, Wang M et al (2008) Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler. Polymer 49(22):4861–4870CrossRef Xu S, Wen M, Li J, Guo S, Wang M et al (2008) Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler. Polymer 49(22):4861–4870CrossRef
40.
Zurück zum Zitat Chen Y, Li H (2005) Effect of ultrasound on the morphology and properties of polypropylene/inorganic filler composites. J Appl Polym Sci 97(4):1553–1560CrossRef Chen Y, Li H (2005) Effect of ultrasound on the morphology and properties of polypropylene/inorganic filler composites. J Appl Polym Sci 97(4):1553–1560CrossRef
41.
Zurück zum Zitat Peng B, Wu H, Bao W, Guo S, Chen Y, Huang H et al (2010) Polym J 43(1):91–96CrossRef Peng B, Wu H, Bao W, Guo S, Chen Y, Huang H et al (2010) Polym J 43(1):91–96CrossRef
42.
Zurück zum Zitat Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287(6):395–403CrossRef Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287(6):395–403CrossRef
43.
Zurück zum Zitat Pötschke P, Villmow T, Krause B (2013) Melt mixed PCL/MWCNT composites prepared at different rotation speeds: characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution. Polymer 54(12):3071–3078CrossRef Pötschke P, Villmow T, Krause B (2013) Melt mixed PCL/MWCNT composites prepared at different rotation speeds: characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution. Polymer 54(12):3071–3078CrossRef
44.
Zurück zum Zitat Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213(10–11):1060–1077CrossRef Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213(10–11):1060–1077CrossRef
45.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
46.
Zurück zum Zitat Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45(7):1446–1452CrossRef Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45(7):1446–1452CrossRef
47.
Zurück zum Zitat Pegel S, Pötschke P, Petzold G, Alig I, Dudkin SM (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49(4):974–984CrossRef Pegel S, Pötschke P, Petzold G, Alig I, Dudkin SM (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49(4):974–984CrossRef
48.
Zurück zum Zitat Jiang X, Drzal LT (2012) Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J Appl Polym Sci 124(1):525–535CrossRef Jiang X, Drzal LT (2012) Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J Appl Polym Sci 124(1):525–535CrossRef
49.
Zurück zum Zitat Huang W, Brian R, Drzal LT (2013) Dispersion optimization of exfoliated graphene nanoplatelet in polyetherimide nanocomposites: extrusion, precoating, and solid state ball milling. Polym Compos 34(3):426–432CrossRef Huang W, Brian R, Drzal LT (2013) Dispersion optimization of exfoliated graphene nanoplatelet in polyetherimide nanocomposites: extrusion, precoating, and solid state ball milling. Polym Compos 34(3):426–432CrossRef
50.
Zurück zum Zitat Zhong J, Isayev AI, Zhang X (2016) Ultrasonic twin screw compounding of polypropylene with carbon nanotubes, graphene nanoplates and carbon black. Eur Polym J 80:16–39CrossRef Zhong J, Isayev AI, Zhang X (2016) Ultrasonic twin screw compounding of polypropylene with carbon nanotubes, graphene nanoplates and carbon black. Eur Polym J 80:16–39CrossRef
51.
Zurück zum Zitat Iqbal MZ, Abdala AA, Mittal V, Seifert S, Herring AM et al (2016) Processable conductive graphene/polyethylene nanocomposites: effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure. Polymer 98:143–155CrossRef Iqbal MZ, Abdala AA, Mittal V, Seifert S, Herring AM et al (2016) Processable conductive graphene/polyethylene nanocomposites: effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure. Polymer 98:143–155CrossRef
52.
Zurück zum Zitat Devpura A, Phelan PE, Prasher RS (2001) Size effects on the thermal conductivity of polymers laden with highly conductive filler particles. Nanosc Microsc Therm 5(3):177–189CrossRef Devpura A, Phelan PE, Prasher RS (2001) Size effects on the thermal conductivity of polymers laden with highly conductive filler particles. Nanosc Microsc Therm 5(3):177–189CrossRef
53.
Zurück zum Zitat Polley MH, Boonstra BBST (1957) Carbon blacks for highly conductive rubber. Rubber Chem Technol 30:170–179CrossRef Polley MH, Boonstra BBST (1957) Carbon blacks for highly conductive rubber. Rubber Chem Technol 30:170–179CrossRef
55.
Zurück zum Zitat Ma P, Liu M, Zhang H, Wang S, Wang R, Wang K et al (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interface 1(5):1090–1096CrossRef Ma P, Liu M, Zhang H, Wang S, Wang R, Wang K et al (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interface 1(5):1090–1096CrossRef
Metadaten
Titel
Investigation of the conductive network formation of polypropylene/graphene nanoplatelets composites for different platelet sizes
verfasst von
Suihua He
Jingjing Zhang
Xiaoting Xiao
Xinmi Hong
Yongjian Lai
Publikationsdatum
14.08.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1413-y

Weitere Artikel der Ausgabe 22/2017

Journal of Materials Science 22/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.