Skip to main content
Log in

Effect of Al3+ modification on cobalt ferrite and its impact on the magnetoelectric effect in BCZT–CFO multiferroic composites

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One of the methods to enhance the functional properties of two-phase multiferroic magnetoelectrics is to increase magnetostriction of the ferrite phase. Al3+-modified cobalt ferrite Co(Al0.5Fe1.5)O4 shows better magnetostriction than unmodified cobalt ferrite. It is used in combination with (Ba,Ca)(Zr,Ti)O3 which has very good piezoelectric properties, to form a multiferroic composite. The composite shows good magnetoelectric characteristics, both macroscopically (converse magnetoelectric coefficient of 11 ps/m) and microscopically. Al3+ proves to be the best non-magnetic dopant to enhance magnetostriction in CoFe2O4 and thus the magnetoelectric coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Lupascu DC, Wende H, Etier M, Nazrabi A, Anusca I, Trivedi H, Shvartsman VV, Landers J, Salamon S, Schmitz-Antoniak C (2015) Measuring the magnetoelectric effect across scales. GAMM-Mitteilungen 38(1):25–74

    Article  Google Scholar 

  2. Bibes M, Barthelemy A (2008) Multiferroics: towards a magnetoelectric memory. Nat Mater 7(6):425–426

    Article  Google Scholar 

  3. Ma J, Hu J, Li Z, Nan C-W (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23(9):1062–1087

    Article  Google Scholar 

  4. Zhai J, Xing Z, Dong S, Li J, Viehland D (2006) Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl Phys Lett 88(6):062510

    Article  Google Scholar 

  5. Dai X, Wen Y, Li P, Yang J, Zhang G (2009) Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer. Sens Actuators A Phys 156(2):350–358

    Article  Google Scholar 

  6. Lou J, Reed D, Liu M, Sun NX (2009) Electrostatically tunable magnetoelectric inductors with large inductance tunability. Appl Phys Lett 94(11):112508

    Article  Google Scholar 

  7. Dong S, Li JF, Viehland D, Cheng J, Cross LE (2004) A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite. Appl Phys Lett 85(16):3534–3536

    Article  Google Scholar 

  8. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):797–818

    Article  Google Scholar 

  9. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103(25):257602

    Article  Google Scholar 

  10. Feng Z, Luo J, Zhang W, Tang X, Cheng Z, Shi D, Dou S (2015) Enhanced piezoelectric properties of solution-modified Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 thick films. J Alloys Compd 632:651–654

    Article  Google Scholar 

  11. Ehmke MC, Ehrlich SN, Blendell JE, Bowman KJ (2012) Phase coexistence and ferroelastic texture in high strain (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics. J Appl Phys 111(12):124110

    Article  Google Scholar 

  12. Acosta M, Khakpash N, Someya T, Novak N, Jo W, Nagata H, Rossetti GA, Rödel J (2015) Origin of the large piezoelectric activity in (1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics. Phys Rev B 91(10):104108

    Article  Google Scholar 

  13. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681

    Article  Google Scholar 

  14. Borhan AI, Iordan AR, Palamaru MN (2013) Correlation between structural, magnetic and electrical properties of nanocrystalline Al3+ substituted zinc ferrite. Mater Res Bull 48(7):2549–2556

    Article  Google Scholar 

  15. Ranvah N, Nlebedim IC, Melikhov Y, Snyder JE, Jiles DC, Moses AJ, Williams PI, Anayi F, Song SH (2008) Temperature dependence of magnetostriction of Co1+xGexFe2−2xO4 for magnetostrictive sensor and actuator applications. IEEE Trans Magn 44(11):3013–3016

    Article  Google Scholar 

  16. Chen Y, Snyder JE, Schwichtenberg CR, Dennis KW, McCallum RW, Jiles DC (1999) Metal-bonded Co-ferrite composites for magnetostrictive torque sensor applications. IEEE Trans Magn 35(5):3652–3654

    Article  Google Scholar 

  17. Nlebedim IC, Ranvah N, Melikhov Y, Williams PI, Snyder JE, Moses AJ, Jiles DC (2009) Magnetic and magnetomechanical properties of CoAlxFe2−xO4 for stress sensor and actuator applications. IEEE Trans Magn 45(10):4120–4123

    Article  Google Scholar 

  18. Kumar L, Kar M (2011) Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J Magn Magn Mater 323(15):2042–2048

    Article  Google Scholar 

  19. Singhal S, Barthwal SK, Chandra K (2006) XRD, magnetic and Mössbauer spectral studies of nano size aluminum substituted cobalt ferrites (CoAlxFe2−xO4). J Magn Magn Mater 306(2):233–240

    Article  Google Scholar 

  20. Anantharamaiah PN, Joy PA (2015) Magnetic and magnetostrictive properties of aluminium substituted cobalt ferrite synthesized by citrate-gel method. J Mater Sci 50(19):6510–6517. doi:10.1007/s10853-015-9211-x

    Article  Google Scholar 

  21. Jauhar S, Kaur J, Goyal A, Singhal S (2016) Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv 6(100):97694–97719

    Article  Google Scholar 

  22. Borisov P, Hochstrat A, Shvartsman VV, Kleemann W (2007) Superconducting quantum interference device setup for magnetoelectric measurements. Rev Sci Instrum 78(10):106105

    Article  Google Scholar 

  23. Jie L, Huaiwu Z, Yinong L, Yulong L, Guokun M, Hong Y (2015) Co–Ti co-substitution of M-type hexagonal barium ferrite. Mater Res Express 2(4):046104

    Article  Google Scholar 

  24. Zhang R-F, Deng C-Y, Ren L, Li Z, Zhou J-P (2014) Ferroelectric, ferromagnetic, and magnetoelectric properties of multiferroic Ni0.5Zn0.5Fe2O4–BaTiO3 composite ceramics. J Electron Mater 43(4):1043–1047

    Article  Google Scholar 

  25. Qi X, Zhou J, Li B, Zhang Y, Yue Z, Gui Z, Li L (2004) Preparation and spontaneous polarization–magnetization of a new ceramic ferroelectric–ferromagnetic composite. J Am Ceram Soc 87(10):1848–1852

    Article  Google Scholar 

  26. Zhong XL, Wang JB, Liao M, Huang GJ, Xie SH, Zhou YC, Qiao Y, He JP (2007) Multiferroic nanoparticulate Bi3.15Nd0.85Ti3O12–CoFe2O4 composite thin films prepared by a chemical solution deposition technique. Appl Phys Lett 90(15):152903

    Article  Google Scholar 

  27. Li F, Liu J, Evans DG, Duan X (2004) Stoichiometric synthesis of pure MFe2O4 (M = Mg Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem Mater 16(8):1597–1602

    Article  Google Scholar 

  28. Wu L, Shen B, Sun S (2015) Synthesis and assembly of barium-doped iron oxide nanoparticles and nanomagnets. Nanoscale 7(39):16165–16169

    Article  Google Scholar 

  29. Hook HJV (1964) Oxygen stoichiometry in the compound BaFeO3−x. J Phys Chem 68(12):3786–3789

    Article  Google Scholar 

  30. Malinofsky WW, Kedesdy H (1954) Barium iron oxide isomorphs of hexagonal and tetragonal BaTiO3. J Am Chem Soc 76(11):3090–3091

    Article  Google Scholar 

  31. Naveed-Ul-Haq M, Shvartsman VV, Salamon S, Wende H, Trivedi H, Mumtaz A, Lupascu DC (2016) A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect. Sci Rep 6:32164

    Article  Google Scholar 

  32. Evans DM, Schilling A, Kumar A, Sanchez D, Ortega N, Arredondo M, Katiyar RS, Gregg JM, Scott JF (2013) Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat Commun 4:1534

    Article  Google Scholar 

  33. Wan JG, Wang XW, Wu YJ, Zeng M, Wang Y, Jiang H, Zhou WQ, Wang GH, Liu J-M (2005) Magnetoelectric CoFe2O4–Pb(Zr, Ti)O3 composite thin films derived by a sol–gel process. Appl Phys Lett 86(12):122501

    Article  Google Scholar 

  34. Srinivasan G, Rasmussen ET, Gallegos J, Srinivasan R, Bokhan YI, Laletin VM (2001) Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys Rev B 64(21):214408

    Article  Google Scholar 

  35. Zeng M, Wan JG, Wang Y, Yu H, Liu J-M, Jiang XP, Nan CW (2004) Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J Appl Phys 95(12):8069–8073

    Article  Google Scholar 

  36. Shvartsman VV, Alawneh F, Borisov P, Kozodaev D, Lupascu DC (2011) Converse magnetoelectric effect in CoFe2O4–BaTiO3 composites with a core–shell structure. Smart Mater Struct 20(7):075006

    Article  Google Scholar 

  37. Lee SJ, Lo CCH, Matlage PN, Song SH, Melikhov Y, Snyder JE, Jiles DC (2007) Magnetic and magnetoelastic properties of Cr-substituted cobalt ferrite. J Appl Phys 102(7):073910

    Article  Google Scholar 

  38. Bozorth RM, Tilden EF, Williams AJ (1955) Anisotropy and magnetostriction of some ferrites. Phys Rev 99(6):1788–1798

    Article  Google Scholar 

  39. Cullity BD, Graham CD (2011) Introduction to magnetic materials, 2nd edn. Wiley, New York

    Google Scholar 

  40. Lacheisserie EDTD, Gignoux D, Schlenker M (2005) Magnetism: fundamentals. Springer-Verlag, New York, p 507

    Book  Google Scholar 

  41. Song SH, Lo CCH, Lee SJ, Aldini ST, Snyder JE, Jiles DC (2007) Magnetic and magnetoelastic properties of Ga-substituted cobalt ferrite. J Appl Phys 101(9):09C517

    Article  Google Scholar 

  42. Melikhov Y, Snyder JE, Lo CCH, Matlage PN, Song SH, Dennis KW, Jiles DC (2006) The effect of Cr-substitution on the magnetic anisotropy and its temperature dependence in Cr-substituted cobalt ferrite. IEEE Trans Magn 42(10):2861–2863

    Article  Google Scholar 

  43. Lupascu D, Rödel J (2005) Fatigue in bulk lead zirconate titanate actuator materials. Adv Eng Mater 7(10):882–898

    Article  Google Scholar 

  44. Balke N, Maksymovych P, Jesse S, Herklotz A, Tselev A, Eom C-B, Kravchenko II, Yu P, Kalinin SV (2015) Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano 9(6):6484–6492

    Article  Google Scholar 

  45. Trivedi H, Shvartsman VV, Lupascu DC, Medeiros MSA, Pullar RC, Kholkin AL, Zelenovskiy P, Sosnovskikh A, Shur VY (2015) Local manifestations of a static magnetoelectric effect in nanostructured BaTiO3–BaFe12O9 composite multiferroics. Nanoscale 7(10):4489–4496

    Article  Google Scholar 

Download references

Acknowledgements

M.N.-U.-H. and D.C.L acknowledge support through DFG Forschergruppe 1509 Ferroic Functional Materials (Lu729/12). S.S., J.L. and H.W. would like to thank U.von Hörsten for his expert technical assistance. Their work was supported by Stiftung Mercator (MERCUR) and by the DFG within the SPP 1681 (WE2623/7-1) and FOR 1509 (We2623/13). M.N.-U.-H. would like to thank Smail Boukercha for assistance in SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naveed-Ul-Haq.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveed-Ul-Haq, M., Shvartsman, V.V., Constantinescu, G. et al. Effect of Al3+ modification on cobalt ferrite and its impact on the magnetoelectric effect in BCZT–CFO multiferroic composites. J Mater Sci 52, 13402–13413 (2017). https://doi.org/10.1007/s10853-017-1444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1444-4

Keywords

Navigation