Skip to main content
Erschienen in: Journal of Materials Science 2/2018

02.10.2017 | Energy materials

Local degradation pathways in lithium-rich manganese–nickel–cobalt oxide epitaxial thin films

verfasst von: Aaron C. Johnston-Peck, Saya Takeuchi, K. Kamala Bharathi, Andrew. A. Herzing, Leonid A. Bendersky

Erschienen in: Journal of Materials Science | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrochemical performance and microstructure of positive electrodes are intimately linked. As such, developing batteries resistance to capacity and voltage fade requires understanding these underlying structure–property relationships and their evolution with operation. Epitaxial films of a Li-rich manganese–nickel–cobalt oxide cathode material were deposited on (100)- and (111)-oriented SrRuO3/SrTiO3 substrates. Cyclic voltammetry and impedance spectroscopy tracked the response of these positive electrode materials, while the microstructure of the pristine and cycled films was characterized using transmission electron microscopy. Energy-dispersive X-ray spectroscopy identifies compositional fluctuations in as-deposited films. Phase transformations and dissolution were observed after electrochemical testing. There is a correlation between both local composition and substrate orientation (i.e., surface faceting) and what degradation pathways are active. Regions with comparatively higher concentrations of Ni and Co were more resistant to dissolution and unfavorable phase transformations than those with relatively more Mn. As such, a global composition metric may not be an accurate predictor of degradation and performance. Rather possessing the synthetic ability to engineer the chemical profile as well as characterizing it, pose a challenge and opportunity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sheu SP, Yao CY, Chen JM, Chiou YC (1997) Influence of the LiCoO2 particle size on the performance of lithium-ion batteries. J Power Sources 68:533–535CrossRef Sheu SP, Yao CY, Chen JM, Chiou YC (1997) Influence of the LiCoO2 particle size on the performance of lithium-ion batteries. J Power Sources 68:533–535CrossRef
2.
Zurück zum Zitat Yamada I, Iriyama Y, Abe T, Ogumi Z (2007) Lithium-ion transfer on a LixCoO2 thin film electrode prepared by pulsed laser deposition—Effect of orientation. J Power Sources 172:933–937CrossRef Yamada I, Iriyama Y, Abe T, Ogumi Z (2007) Lithium-ion transfer on a LixCoO2 thin film electrode prepared by pulsed laser deposition—Effect of orientation. J Power Sources 172:933–937CrossRef
3.
Zurück zum Zitat Takeuchi S, Tan H, Bharathi KK, Stafford GR, Shin J, Yasui S, Takeuchi I, Bendersky LA (2015) Epitaxial LiCoO2 films as a model system for fundamental electrochemical studies of positive electrodes. ACS Appl Mater Interfaces 7:7901–7911CrossRef Takeuchi S, Tan H, Bharathi KK, Stafford GR, Shin J, Yasui S, Takeuchi I, Bendersky LA (2015) Epitaxial LiCoO2 films as a model system for fundamental electrochemical studies of positive electrodes. ACS Appl Mater Interfaces 7:7901–7911CrossRef
4.
Zurück zum Zitat Lee Y-G, Choi N-S, Park J-K (2002) Effect of cathode binder on electrochemical properties of lithium rechargeable polymer batteries. J Power Sources 112:61–66CrossRef Lee Y-G, Choi N-S, Park J-K (2002) Effect of cathode binder on electrochemical properties of lithium rechargeable polymer batteries. J Power Sources 112:61–66CrossRef
5.
Zurück zum Zitat Naoaki Yabuuchi YK, Misaki K, Matsuyama T, Komaba S (2015) Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure. J Electrochem Soc 162:A538–A544CrossRef Naoaki Yabuuchi YK, Misaki K, Matsuyama T, Komaba S (2015) Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure. J Electrochem Soc 162:A538–A544CrossRef
6.
Zurück zum Zitat Hong JK, Lee JH, Oh SM (2002) Effect of carbon additive on electrochemical performance of LiCoO2 composite cathodes. J Power Sources 111:90–96CrossRef Hong JK, Lee JH, Oh SM (2002) Effect of carbon additive on electrochemical performance of LiCoO2 composite cathodes. J Power Sources 111:90–96CrossRef
7.
Zurück zum Zitat Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Effects of conductive additives in composite positive electrodes on charge-discharge behaviors of all-solid-state lithium secondary batteries. J Electrochem Soc 152:A1499–A1503CrossRef Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Effects of conductive additives in composite positive electrodes on charge-discharge behaviors of all-solid-state lithium secondary batteries. J Electrochem Soc 152:A1499–A1503CrossRef
8.
Zurück zum Zitat Hirayama M, Sonoyama N, Ito M, Minoura M, Mori D, Yamada A, Tamura K, Mizuki JI, Kanno R (2007) Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn2O4 electrode. J Electrochem Soc 154:A1065–A1072CrossRef Hirayama M, Sonoyama N, Ito M, Minoura M, Mori D, Yamada A, Tamura K, Mizuki JI, Kanno R (2007) Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn2O4 electrode. J Electrochem Soc 154:A1065–A1072CrossRef
9.
Zurück zum Zitat Lu Z, MacNeil DD, Dahn JR (2001) Layered cathode materials Li[NixLi(1/3–2x/3)Mn(2/3 − x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett 4:A191–A194CrossRef Lu Z, MacNeil DD, Dahn JR (2001) Layered cathode materials Li[NixLi(1/3–2x/3)Mn(2/3 − x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett 4:A191–A194CrossRef
10.
Zurück zum Zitat Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[NixLi1/3–2x/3Mn2/3−x/3]O2. J Electrochem Soc 149:A778–A791CrossRef Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[NixLi1/3–2x/3Mn2/3−x/3]O2. J Electrochem Soc 149:A778–A791CrossRef
11.
Zurück zum Zitat Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698CrossRef Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698CrossRef
12.
Zurück zum Zitat Fell CR, Carroll KJ, Chi M, Meng YS (2010) Synthesis–structure–property relations in layered, “Li-excess” oxides electrode materials Li[Li1/3–2x/3NixMn2/3−x/3]O2 (x = 1/3, 1/4, and 1/5). J Electrochem Soc 157:A1202–A1211CrossRef Fell CR, Carroll KJ, Chi M, Meng YS (2010) Synthesis–structure–property relations in layered, “Li-excess” oxides electrode materials Li[Li1/3–2x/3NixMn2/3−x/3]O2 (x = 1/3, 1/4, and 1/5). J Electrochem Soc 157:A1202–A1211CrossRef
13.
Zurück zum Zitat Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106CrossRef Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106CrossRef
14.
Zurück zum Zitat Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Goobes G, Markovsky B, Aurbach D (2010) Synthesis of integrated cathode materials xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and studies of their electrochemical behavior. J Electrochem Soc 157:A1121–A1130CrossRef Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Goobes G, Markovsky B, Aurbach D (2010) Synthesis of integrated cathode materials xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and studies of their electrochemical behavior. J Electrochem Soc 157:A1121–A1130CrossRef
15.
Zurück zum Zitat Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 199:220–226CrossRef Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 199:220–226CrossRef
16.
Zurück zum Zitat Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106CrossRef Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106CrossRef
17.
Zurück zum Zitat Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x≤1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789CrossRef Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x≤1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789CrossRef
18.
Zurück zum Zitat Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302CrossRef Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302CrossRef
19.
Zurück zum Zitat Chen R, Whittingham MS (1997) Cathodic behavior of alkali manganese oxides from permanganate. J Electrochem Soc 144:L64–L67CrossRef Chen R, Whittingham MS (1997) Cathodic behavior of alkali manganese oxides from permanganate. J Electrochem Soc 144:L64–L67CrossRef
20.
Zurück zum Zitat Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500CrossRef Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500CrossRef
21.
Zurück zum Zitat Reimers JN, Rossen E, Jones CD, Dahn JR (1993) Structure and electrochemistry of LixFeyNi1-yO2. Solid State Ionics 61:335–344CrossRef Reimers JN, Rossen E, Jones CD, Dahn JR (1993) Structure and electrochemistry of LixFeyNi1-yO2. Solid State Ionics 61:335–344CrossRef
22.
Zurück zum Zitat Dunn LGJB, Kelly JC, James C, Gallagher KG (2015) The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ Sci 8:158–168CrossRef Dunn LGJB, Kelly JC, James C, Gallagher KG (2015) The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ Sci 8:158–168CrossRef
23.
Zurück zum Zitat Myung ST, Komaba S, Kumagai N (2004) Effect of excess lithium on LiNi0.5Mn0.5O2+δ and its electrochemistry as lithium insertion material. Solid State Ionics 170:139–144CrossRef Myung ST, Komaba S, Kumagai N (2004) Effect of excess lithium on LiNi0.5Mn0.5O2+δ and its electrochemistry as lithium insertion material. Solid State Ionics 170:139–144CrossRef
24.
Zurück zum Zitat Rougier A, Saadoune I, Gravereau P, Willmann P, Delmas C (1996) Effect of cobalt substitution on cationic distribution in LiNi1 − yCoyO2 electrode materials. Solid State Ionics 90:83–90CrossRef Rougier A, Saadoune I, Gravereau P, Willmann P, Delmas C (1996) Effect of cobalt substitution on cationic distribution in LiNi1 − yCoyO2 electrode materials. Solid State Ionics 90:83–90CrossRef
25.
Zurück zum Zitat Lu Z, MacNeil DD, Dahn JR (2001) Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem Solid-State Lett 4:A200–A203CrossRef Lu Z, MacNeil DD, Dahn JR (2001) Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem Solid-State Lett 4:A200–A203CrossRef
26.
Zurück zum Zitat Spahr ME, Novák P, Haas O, Nesper R (1997) Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system. J Power Sources 68(1997):629–633CrossRef Spahr ME, Novák P, Haas O, Nesper R (1997) Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system. J Power Sources 68(1997):629–633CrossRef
27.
Zurück zum Zitat Nitta Y, Okamura K, Haraguchi K, Kobayashi S, Ohta A (1995) Crystal structure study of LiNi1-xMnxO2. J Power Sources 54:511–515CrossRef Nitta Y, Okamura K, Haraguchi K, Kobayashi S, Ohta A (1995) Crystal structure study of LiNi1-xMnxO2. J Power Sources 54:511–515CrossRef
28.
Zurück zum Zitat Rossen E, Jones CDW, Dahn JR (1992) Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics 57:311–318CrossRef Rossen E, Jones CDW, Dahn JR (1992) Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics 57:311–318CrossRef
29.
Zurück zum Zitat Johnson CS, Li N, Vaughey JT, Hackney SA, Thackeray MM (2005) Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3·(1 − x)Li1 + yMn2−yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem Commun 7:528–536CrossRef Johnson CS, Li N, Vaughey JT, Hackney SA, Thackeray MM (2005) Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO(1 − x)Li1 + yMn2−yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem Commun 7:528–536CrossRef
30.
Zurück zum Zitat Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267CrossRef Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267CrossRef
31.
Zurück zum Zitat Mohanty D, Sefat AS, Kalnaus S, Li J, Meisner RA, Payzant EA, Abraham DP, Wood DL, Daniel C (2013) Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J Mater Chem A 1:6249–6261CrossRef Mohanty D, Sefat AS, Kalnaus S, Li J, Meisner RA, Payzant EA, Abraham DP, Wood DL, Daniel C (2013) Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J Mater Chem A 1:6249–6261CrossRef
32.
Zurück zum Zitat Li Y, Bettge M, Polzin B, Zhu Y, Balasubramanian M, Abraham DP (2013) Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. J Electrochem Soc 160:A3006–A3019CrossRef Li Y, Bettge M, Polzin B, Zhu Y, Balasubramanian M, Abraham DP (2013) Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. J Electrochem Soc 160:A3006–A3019CrossRef
33.
Zurück zum Zitat Yu X, Lyu Y, Gu L, Wu H, Bak S-M, Zhou Y, Amine K, Ehrlich SN, Li H, Nam K-W, Yang X-Q (2014) Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater 4:13–00950CrossRef Yu X, Lyu Y, Gu L, Wu H, Bak S-M, Zhou Y, Amine K, Ehrlich SN, Li H, Nam K-W, Yang X-Q (2014) Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater 4:13–00950CrossRef
34.
Zurück zum Zitat Tsuyoshi O, Kazunori T (2011) Epitaxial thin-film growth of SrRuO3, Sr3Ru2O7, and Sr2RuO4 from a SrRuO3 target by pulsed laser deposition. Appl Phys Express 4:025501CrossRef Tsuyoshi O, Kazunori T (2011) Epitaxial thin-film growth of SrRuO3, Sr3Ru2O7, and Sr2RuO4 from a SrRuO3 target by pulsed laser deposition. Appl Phys Express 4:025501CrossRef
35.
Zurück zum Zitat Trask SE, Li Y, Kubal JJ, Bettge M, Polzin BJ, Zhu Y, Jansen AN, Abraham DP (2014) From coin cells to 400 mAh pouch cells: enhancing performance of high-capacity lithium-ion cells via modifications in electrode constitution and fabrication. J Power Sources 259:233–244CrossRef Trask SE, Li Y, Kubal JJ, Bettge M, Polzin BJ, Zhu Y, Jansen AN, Abraham DP (2014) From coin cells to 400 mAh pouch cells: enhancing performance of high-capacity lithium-ion cells via modifications in electrode constitution and fabrication. J Power Sources 259:233–244CrossRef
36.
Zurück zum Zitat Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRef Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRef
37.
Zurück zum Zitat Stadelmann PA (1987) EMS-a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–145CrossRef Stadelmann PA (1987) EMS-a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–145CrossRef
38.
Zurück zum Zitat Kang S-H, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0 ≤ x ≤ 0.5). J Mater Chem 17:2069CrossRef Kang S-H, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0 ≤ x ≤ 0.5). J Mater Chem 17:2069CrossRef
39.
Zurück zum Zitat Yoon W-S, Paik Y, Yang X-Q, Balasubramanian M, McBreen J, Grey CP (2002) Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy. Electrochem Solid-State Lett 5:A263–A266CrossRef Yoon W-S, Paik Y, Yang X-Q, Balasubramanian M, McBreen J, Grey CP (2002) Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy. Electrochem Solid-State Lett 5:A263–A266CrossRef
40.
Zurück zum Zitat Li Y, Bareño J, Bettge M, Abraham DP (2015) Unexpected voltage fade in LMR-NMC oxides cycled below the “activation” plateau. J Electrochem Soc 162:A155–A161CrossRef Li Y, Bareño J, Bettge M, Abraham DP (2015) Unexpected voltage fade in LMR-NMC oxides cycled below the “activation” plateau. J Electrochem Soc 162:A155–A161CrossRef
41.
Zurück zum Zitat Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3–2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822CrossRef Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3–2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822CrossRef
42.
Zurück zum Zitat Kim JS, Johnson CS, Vaughey JT, Thackeray MM (2006) Pre-conditioned layered electrodes for lithium batteries. J Power Sources 153:258–264CrossRef Kim JS, Johnson CS, Vaughey JT, Thackeray MM (2006) Pre-conditioned layered electrodes for lithium batteries. J Power Sources 153:258–264CrossRef
43.
Zurück zum Zitat Robertson AD, Bruce PG (2004) Overcapacity of Li[NixLi1/3–2x/3Mn2/3−x/3]O2 electrodes. Electrochem Solid-State Lett 7:A294–A298CrossRef Robertson AD, Bruce PG (2004) Overcapacity of Li[NixLi1/3–2x/3Mn2/3−x/3]O2 electrodes. Electrochem Solid-State Lett 7:A294–A298CrossRef
44.
Zurück zum Zitat Bard AJ, Faulkner LR (2001) electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York Bard AJ, Faulkner LR (2001) electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York
45.
Zurück zum Zitat Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc 148:A422–A426CrossRef Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc 148:A422–A426CrossRef
46.
Zurück zum Zitat Dokko K, Mohamedi M, Umeda M, Uchida I (2003) Kinetic study of Li-ion extraction and insertion at LiMn2O4 single particle electrodes using potential step and impedance methods. J Electrochem Soc 150:A425–A429CrossRef Dokko K, Mohamedi M, Umeda M, Uchida I (2003) Kinetic study of Li-ion extraction and insertion at LiMn2O4 single particle electrodes using potential step and impedance methods. J Electrochem Soc 150:A425–A429CrossRef
47.
Zurück zum Zitat Mohanty D, Li J, Abraham DP, Huq A, Payzant EA, Wood DL, Daniel C (2014) Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem Mater 26:6272–6280CrossRef Mohanty D, Li J, Abraham DP, Huq A, Payzant EA, Wood DL, Daniel C (2014) Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem Mater 26:6272–6280CrossRef
48.
Zurück zum Zitat Johnston-Peck AC, Takeuchi S, Bharathi KK, Herzing AA, Bendersky LA (2017) Domain formation in lithium-rich manganese-nickel-cobalt-oxide epitaxial thin films and implications for interpretation of electrochemical behavior Submitted Johnston-Peck AC, Takeuchi S, Bharathi KK, Herzing AA, Bendersky LA (2017) Domain formation in lithium-rich manganese-nickel-cobalt-oxide epitaxial thin films and implications for interpretation of electrochemical behavior Submitted
49.
Zurück zum Zitat Shukla AK, Ramasse QM, Ophus C, Duncan H, Hage F, Chen G (2015) Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides. Nat Commun 6:8711CrossRef Shukla AK, Ramasse QM, Ophus C, Duncan H, Hage F, Chen G (2015) Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides. Nat Commun 6:8711CrossRef
50.
Zurück zum Zitat Johnston-Peck AC, Levin I, Herzing AA, Bendersky LA (2016) Structural studies of Li1.2Mn0.55Ni0.15Co0.1O2 electrode material. Mater Charact 119:120–128CrossRef Johnston-Peck AC, Levin I, Herzing AA, Bendersky LA (2016) Structural studies of Li1.2Mn0.55Ni0.15Co0.1O2 electrode material. Mater Charact 119:120–128CrossRef
51.
Zurück zum Zitat Shukla AK, Ophus C, Gammer C, Ramasse Q (2016) Study of Structure of Li- and Mn-rich Transition Metal Oxides Using 4D-STEM. Microsc Microanal 22:494–495CrossRef Shukla AK, Ophus C, Gammer C, Ramasse Q (2016) Study of Structure of Li- and Mn-rich Transition Metal Oxides Using 4D-STEM. Microsc Microanal 22:494–495CrossRef
52.
Zurück zum Zitat Mohanty D, Huq A, Payzant EA, Sefat AS, Li J, Abraham DP, Wood DL, Daniel C (2013) Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: insight into the crystal structure. Chem Mater 25:4064–4070CrossRef Mohanty D, Huq A, Payzant EA, Sefat AS, Li J, Abraham DP, Wood DL, Daniel C (2013) Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: insight into the crystal structure. Chem Mater 25:4064–4070CrossRef
53.
Zurück zum Zitat Bendersky LA, Tan H, Bharathi Karuppanan K, Li Z-P, Johnston-Peck AC (2017) Crystallography and growth of epitaxial oxide films for fundamental studies of cathode materials used in advanced Li-Ion batteries. Crystals 7:127CrossRef Bendersky LA, Tan H, Bharathi Karuppanan K, Li Z-P, Johnston-Peck AC (2017) Crystallography and growth of epitaxial oxide films for fundamental studies of cathode materials used in advanced Li-Ion batteries. Crystals 7:127CrossRef
54.
Zurück zum Zitat Jarvis KA, Wang C-C, Knight JC, Rabenberg L, Manthiram A, Ferreira PJ (2016) Formation and effect of orientation domains in layered oxide cathodes of lithium-ion batteries. Acta Mater 108:264–270CrossRef Jarvis KA, Wang C-C, Knight JC, Rabenberg L, Manthiram A, Ferreira PJ (2016) Formation and effect of orientation domains in layered oxide cathodes of lithium-ion batteries. Acta Mater 108:264–270CrossRef
55.
Zurück zum Zitat Yan P, Xiao L, Zheng J, Zhou Y, He Y, Zu X, Mao SX, Xiao J, Gao F, Zhang J-G, Wang C-M (2015) Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries. Chem Mater 27:975–982CrossRef Yan P, Xiao L, Zheng J, Zhou Y, He Y, Zu X, Mao SX, Xiao J, Gao F, Zhang J-G, Wang C-M (2015) Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries. Chem Mater 27:975–982CrossRef
56.
Zurück zum Zitat Phillips PJ, Bareño J, Li Y, Abraham DP, Klie RF (2015) On the localized nature of the structural transformations of Li2MnO3 following electrochemical cycling. Adv Energy Mater 5:1501252CrossRef Phillips PJ, Bareño J, Li Y, Abraham DP, Klie RF (2015) On the localized nature of the structural transformations of Li2MnO3 following electrochemical cycling. Adv Energy Mater 5:1501252CrossRef
57.
Zurück zum Zitat Lee E, Persson KA (2014) Structural and chemical evolution of the layered Li-Excess LixMnO3 as a function of Li content from first-principles calculations. Adv Energy Mater 4:1400498CrossRef Lee E, Persson KA (2014) Structural and chemical evolution of the layered Li-Excess LixMnO3 as a function of Li content from first-principles calculations. Adv Energy Mater 4:1400498CrossRef
58.
Zurück zum Zitat Ceder G, Van der Ven A (1999) Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochim Acta 45:131–150CrossRef Ceder G, Van der Ven A (1999) Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochim Acta 45:131–150CrossRef
59.
Zurück zum Zitat Qian D, Xu B, Chi M, Meng YS (2014) Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys Chem Chem Phys 16:14665–14668CrossRef Qian D, Xu B, Chi M, Meng YS (2014) Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys Chem Chem Phys 16:14665–14668CrossRef
60.
Zurück zum Zitat Gummow RJ, de Kock A, Thackeray MM (1994) Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69:59–67CrossRef Gummow RJ, de Kock A, Thackeray MM (1994) Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69:59–67CrossRef
61.
Zurück zum Zitat Choi W, Manthiram A (2006) Comparison of metal ion dissolutions from lithium ion battery cathodes. J Electrochem Soc 153:A1760–A1764CrossRef Choi W, Manthiram A (2006) Comparison of metal ion dissolutions from lithium ion battery cathodes. J Electrochem Soc 153:A1760–A1764CrossRef
62.
Zurück zum Zitat Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells. J Electrochem Soc 143:2204–2211CrossRef Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells. J Electrochem Soc 143:2204–2211CrossRef
63.
Zurück zum Zitat Kan WH, Huq A, Manthiram A (2016) Exploration of a metastable normal spinel phase diagram for the quaternary Li–Ni–Mn–Co–O system. Chem Mater 28:1832–1837CrossRef Kan WH, Huq A, Manthiram A (2016) Exploration of a metastable normal spinel phase diagram for the quaternary Li–Ni–Mn–Co–O system. Chem Mater 28:1832–1837CrossRef
64.
Zurück zum Zitat Bak S-M, Nam K-W, Chang W, Yu X, Hu E, Hwang S, Stach EA, Kim K-B, Chung KY, Yang X-Q (2013) Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem Mater 25:337–351CrossRef Bak S-M, Nam K-W, Chang W, Yu X, Hu E, Hwang S, Stach EA, Kim K-B, Chung KY, Yang X-Q (2013) Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem Mater 25:337–351CrossRef
65.
Zurück zum Zitat Delmas C, Ménétrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grüne M, Fournès L (1999) An overview of the Li(Ni, M)O2 systems: syntheses, structures and properties. Electrochim Acta 45:243–253CrossRef Delmas C, Ménétrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grüne M, Fournès L (1999) An overview of the Li(Ni, M)O2 systems: syntheses, structures and properties. Electrochim Acta 45:243–253CrossRef
66.
Zurück zum Zitat Reed J, Ceder G (2004) Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem Rev 104:4513–4534CrossRef Reed J, Ceder G (2004) Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem Rev 104:4513–4534CrossRef
67.
Zurück zum Zitat Mukhopadhyay A, Sheldon BW (2014) Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci 63:58–116CrossRef Mukhopadhyay A, Sheldon BW (2014) Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci 63:58–116CrossRef
68.
Zurück zum Zitat Choi S, Manthiram A (2002) Factors influencing the layered to spinel-like phase transition in layered oxide cathodes. J Electrochem Soc 149:A1157–A1163CrossRef Choi S, Manthiram A (2002) Factors influencing the layered to spinel-like phase transition in layered oxide cathodes. J Electrochem Soc 149:A1157–A1163CrossRef
69.
Zurück zum Zitat Dixit H, Zhou W, Idrobo J-C, Nanda J, Cooper VR (2014) Facet-dependent disorder in pristine high-voltage lithium–manganese-rich cathode material. ACS Nano 8:12710–12716CrossRef Dixit H, Zhou W, Idrobo J-C, Nanda J, Cooper VR (2014) Facet-dependent disorder in pristine high-voltage lithium–manganese-rich cathode material. ACS Nano 8:12710–12716CrossRef
70.
Zurück zum Zitat Devaraj A, Gu M, Colby R, Yan P, Wang CM, Zheng JM, Xiao J, Genc A, Zhang JG, Belharouak I, Wang D, Amine K, Thevuthasan S (2015) Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat Commun 6:8014CrossRef Devaraj A, Gu M, Colby R, Yan P, Wang CM, Zheng JM, Xiao J, Genc A, Zhang JG, Belharouak I, Wang D, Amine K, Thevuthasan S (2015) Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat Commun 6:8014CrossRef
71.
Zurück zum Zitat Trease NM, Seymour ID, Radin MD, Liu H, Liu H, Hy S, Chernova N, Parikh P, Devaraj A, Wiaderek KM, Chupas PJ, Chapman KW, Whittingham MS, Meng YS, Van der Van A, Grey CP (2016) Identifying the distribution of Al3+ in LiNi0.8Co0.15Al0.05O2. Chem Mater 28:8170–8180CrossRef Trease NM, Seymour ID, Radin MD, Liu H, Liu H, Hy S, Chernova N, Parikh P, Devaraj A, Wiaderek KM, Chupas PJ, Chapman KW, Whittingham MS, Meng YS, Van der Van A, Grey CP (2016) Identifying the distribution of Al3+ in LiNi0.8Co0.15Al0.05O2. Chem Mater 28:8170–8180CrossRef
72.
Zurück zum Zitat Brown CR, McCalla E, Watson C, Dahn JR (2015) Combinatorial study of the Li–Ni–Mn–Co oxide pseudoquaternary system for use in Li–Ion battery materials research. ACS Comb Sci 17:381–391CrossRef Brown CR, McCalla E, Watson C, Dahn JR (2015) Combinatorial study of the Li–Ni–Mn–Co oxide pseudoquaternary system for use in Li–Ion battery materials research. ACS Comb Sci 17:381–391CrossRef
73.
Zurück zum Zitat Yan P, Zheng J, Zheng J, Wang Z, Teng G, Kuppan S, Xiao J, Chen G, Pan F, Zhang J-G, Wang C-M (2016) Ni and Co segregations on selective surface facets and rational design of layered lithium transition-metal oxide cathodes. Adv Energy Mater 6:1502455CrossRef Yan P, Zheng J, Zheng J, Wang Z, Teng G, Kuppan S, Xiao J, Chen G, Pan F, Zhang J-G, Wang C-M (2016) Ni and Co segregations on selective surface facets and rational design of layered lithium transition-metal oxide cathodes. Adv Energy Mater 6:1502455CrossRef
Metadaten
Titel
Local degradation pathways in lithium-rich manganese–nickel–cobalt oxide epitaxial thin films
verfasst von
Aaron C. Johnston-Peck
Saya Takeuchi
K. Kamala Bharathi
Andrew. A. Herzing
Leonid A. Bendersky
Publikationsdatum
02.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1593-5

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Science 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.