Skip to main content
Erschienen in: Journal of Materials Science 4/2018

16.10.2017 | Metals

Theoretical investigations of group IV alloys in the Lonsdaleite phase

verfasst von: Qingyang Fan, Changchun Chai, Qun Wei, Kaiqiang Wong, Yuqian Liu, Yintang Yang

Erschienen in: Journal of Materials Science | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structural, elastic, elastic anisotropic, thermodynamic and electronic properties of Lonsdaleite C, Si and Ge and Lonsdaleite C–Si and Si–Ge alloys are investigated using density functional theory. The elastic anisotropy calculations show that the Lonsdaleite C0.25Si0.75 alloy has the greatest anisotropy in Poisson’s ratio, shear modulus, bulk modulus and Young’s modulus. Through the mixing of carbon and silicon and silicon and germanium at certain proportions, Lonsdaleite C0.25Si0.75 with metallic properties and Lonsdaleite Si0.25Ge0.75 with a direct band gap are obtained, where Lonsdaleite Si0.25Ge0.75 is a narrow direct band gap semiconductor with a band gap of 0.76 eV at the HSE06 hybrid functional level. The minimum thermal conductivity calculations on Lonsdaleite C–Si and Si–Ge alloys show that the minimum thermal conductivities of Lonsdaleite C0.75Si0.25 and Lonsdaleite C0.5Si0.5 are greater than that of diamond C, and the minimum thermal conductivities of Lonsdaleite C–Si and Si–Ge alloys in different directions are also investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ziambaras ES (2003) Theory for structure and bulk modulus determination. Phys Rev B 68:064112CrossRef Ziambaras ES (2003) Theory for structure and bulk modulus determination. Phys Rev B 68:064112CrossRef
2.
Zurück zum Zitat Itzhaki L, Altus E, Basch H, Hoz S (2005) Harder than diamond: determining the cross-sectional area and Young’s modulus of molecular rods. Angew Chem Int Ed 44:7432–7435CrossRef Itzhaki L, Altus E, Basch H, Hoz S (2005) Harder than diamond: determining the cross-sectional area and Young’s modulus of molecular rods. Angew Chem Int Ed 44:7432–7435CrossRef
3.
Zurück zum Zitat Weidner DJ, Wang YB, Vaughan MT (1994) Strength of diamond. Science 266:419–422CrossRef Weidner DJ, Wang YB, Vaughan MT (1994) Strength of diamond. Science 266:419–422CrossRef
4.
Zurück zum Zitat Jaglinski T, Kochmann D, Stone D, Lakes RS (2007) Composite materials with viscoelastic stiffness greater than diamond. Science 315:620–622CrossRef Jaglinski T, Kochmann D, Stone D, Lakes RS (2007) Composite materials with viscoelastic stiffness greater than diamond. Science 315:620–622CrossRef
5.
Zurück zum Zitat Xing MJ, Li BH, Yu ZT, Chen Q (2015) Structural, elastic, and electronic properties of a new phase of carbon. Commun Theor Phys 64:237–243CrossRef Xing MJ, Li BH, Yu ZT, Chen Q (2015) Structural, elastic, and electronic properties of a new phase of carbon. Commun Theor Phys 64:237–243CrossRef
6.
Zurück zum Zitat Wei Q, Zhang MG, Yan HY, Lin ZZ, Zhu XM (2014) Structural, electronic and mechanical properties of Imma-carbon. EPL 107:27007CrossRef Wei Q, Zhang MG, Yan HY, Lin ZZ, Zhu XM (2014) Structural, electronic and mechanical properties of Imma-carbon. EPL 107:27007CrossRef
8.
Zurück zum Zitat Xing MJ, Li BH, Yu ZT, Chen Q (2015) C2/m-carbon: structural, mechanical, and electronic properties. J Mater Sci 50:7104–7114CrossRef Xing MJ, Li BH, Yu ZT, Chen Q (2015) C2/m-carbon: structural, mechanical, and electronic properties. J Mater Sci 50:7104–7114CrossRef
9.
Zurück zum Zitat Mujica A, Pickard CJ, Needs RJ (2015) Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys Rev B 91:214104CrossRef Mujica A, Pickard CJ, Needs RJ (2015) Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys Rev B 91:214104CrossRef
10.
Zurück zum Zitat Xing MJ, Li BH, Yu ZT, Chen Q (2016) A Reinvestigation of a superhard tetragonal sp3 carbon allotrope. Materials 9:484CrossRef Xing MJ, Li BH, Yu ZT, Chen Q (2016) A Reinvestigation of a superhard tetragonal sp3 carbon allotrope. Materials 9:484CrossRef
11.
Zurück zum Zitat Zhang MG, Wei Q, Yan HY, Zhao YR, Wang H (2014) A novel superhard tetragonal carbon mononitride. J Phys Chem C 118:3202–3208CrossRef Zhang MG, Wei Q, Yan HY, Zhao YR, Wang H (2014) A novel superhard tetragonal carbon mononitride. J Phys Chem C 118:3202–3208CrossRef
12.
Zurück zum Zitat Wei Q, Zhang Q, Zhang MG (2016) Crystal structures and mechanical properties of Ca2C at high pressure. Materials 9:570CrossRef Wei Q, Zhang Q, Zhang MG (2016) Crystal structures and mechanical properties of Ca2C at high pressure. Materials 9:570CrossRef
13.
Zurück zum Zitat Fan QY, Chai CC, Wei Q, Yang YT (2016) Two novel C3N4 phases: structural, mechanical and electronic properties. Materials 9:427CrossRef Fan QY, Chai CC, Wei Q, Yang YT (2016) Two novel C3N4 phases: structural, mechanical and electronic properties. Materials 9:427CrossRef
14.
Zurück zum Zitat Manyali GS, Warmbier R, Quandt A, Lowther JE (2013) Ab initio study of elastic properties of super hard and graphitic structures of C3N4. Comput Mater Sci 69:299–303CrossRef Manyali GS, Warmbier R, Quandt A, Lowther JE (2013) Ab initio study of elastic properties of super hard and graphitic structures of C3N4. Comput Mater Sci 69:299–303CrossRef
15.
Zurück zum Zitat Wang EG (1997) Research on carbon nitrides. Prog Mater Sci 41:241–298CrossRef Wang EG (1997) Research on carbon nitrides. Prog Mater Sci 41:241–298CrossRef
16.
Zurück zum Zitat Dubinchuk VT, Simakov SK, Pechnikov VA (2010) Lonsdaleite in diamond-bearing metamorphic rocks of the Kokchetav Massif. Dokl Earth Sci 430:40CrossRef Dubinchuk VT, Simakov SK, Pechnikov VA (2010) Lonsdaleite in diamond-bearing metamorphic rocks of the Kokchetav Massif. Dokl Earth Sci 430:40CrossRef
17.
Zurück zum Zitat Pan ZC, Sun H, Zhang Y, Chen CF (2010) Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys Rev Lett 102:055503CrossRef Pan ZC, Sun H, Zhang Y, Chen CF (2010) Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys Rev Lett 102:055503CrossRef
18.
Zurück zum Zitat Chen H, Zhang WY, Wang ZL (2004) Comparative studies on photonic band structures of diamond and hexagonal diamond using the multiple scattering method. J Phys: Condens Matter 16:741–748 Chen H, Zhang WY, Wang ZL (2004) Comparative studies on photonic band structures of diamond and hexagonal diamond using the multiple scattering method. J Phys: Condens Matter 16:741–748
19.
Zurück zum Zitat Wang SQ, Ye HQ (2003) First-principles study on the lonsdaleite phases of C, Si and Ge. J Phys: Condens Matter 15:L197–L202 Wang SQ, Ye HQ (2003) First-principles study on the lonsdaleite phases of C, Si and Ge. J Phys: Condens Matter 15:L197–L202
20.
Zurück zum Zitat De A, Pryor CY (2014) Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase. J Phys Condens Matter 26:045801CrossRef De A, Pryor CY (2014) Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase. J Phys Condens Matter 26:045801CrossRef
21.
Zurück zum Zitat Yoshiasa A, Murai Y, Ohtaka O, Katsura T (2003) Detailed structures of hexagonal diamond (Lonsdaleite) and wurtzite-type BN. Jpn J Appl Phys 42:1694–1704CrossRef Yoshiasa A, Murai Y, Ohtaka O, Katsura T (2003) Detailed structures of hexagonal diamond (Lonsdaleite) and wurtzite-type BN. Jpn J Appl Phys 42:1694–1704CrossRef
22.
Zurück zum Zitat Blank VD, Kulnitskiy BA, Nuzhdin AA (2011) Lonsdaleite formation in process of reverse phase transition diamond–graphite. Diam Relat Mater 20:1315–1318CrossRef Blank VD, Kulnitskiy BA, Nuzhdin AA (2011) Lonsdaleite formation in process of reverse phase transition diamond–graphite. Diam Relat Mater 20:1315–1318CrossRef
23.
Zurück zum Zitat Chen PS, Fan ST, Lan HS, Liu CW (2017) Band calculation of lonsdaleite Ge. J Phys D Appl Phys 50:015107CrossRef Chen PS, Fan ST, Lan HS, Liu CW (2017) Band calculation of lonsdaleite Ge. J Phys D Appl Phys 50:015107CrossRef
24.
Zurück zum Zitat Wang SQ, Ye HQ (2003) Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. J Phys: Condens Matter 15:5307–5314 Wang SQ, Ye HQ (2003) Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. J Phys: Condens Matter 15:5307–5314
25.
Zurück zum Zitat Kustov EF, Novotortsev VM (2010) Structure and optical properties of nanocrystals and quantum dots with diamond, lonsdaleite, sphalerite and wurtzite structures. J Comput Theor Nanosci 7:1531–1545CrossRef Kustov EF, Novotortsev VM (2010) Structure and optical properties of nanocrystals and quantum dots with diamond, lonsdaleite, sphalerite and wurtzite structures. J Comput Theor Nanosci 7:1531–1545CrossRef
26.
Zurück zum Zitat Li QK, Sun Y, Li ZY, Zhou Y (2011) Lonsdaleite—A material stronger and stiffer than diamond. Scr Mater 65:229–232CrossRef Li QK, Sun Y, Li ZY, Zhou Y (2011) Lonsdaleite—A material stronger and stiffer than diamond. Scr Mater 65:229–232CrossRef
27.
Zurück zum Zitat Pan ZC, Sun H, Zhang Y, Chen CF (2009) Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys Rev Lett 102:055503CrossRef Pan ZC, Sun H, Zhang Y, Chen CF (2009) Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys Rev Lett 102:055503CrossRef
28.
Zurück zum Zitat Shumilova TG, Mayer E, Isaenko SI (2011) Natural monocrystalline lonsdaleite. Dokl. Earth Sci 441:1552–1554 Shumilova TG, Mayer E, Isaenko SI (2011) Natural monocrystalline lonsdaleite. Dokl. Earth Sci 441:1552–1554
29.
Zurück zum Zitat Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570 Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570
30.
Zurück zum Zitat Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-newton method. J Comput Phys 131:233–240CrossRef Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-newton method. J Comput Phys 131:233–240CrossRef
31.
Zurück zum Zitat Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892R–7895RCrossRef Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892R–7895RCrossRef
32.
Zurück zum Zitat Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef
33.
Zurück zum Zitat Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–568CrossRef Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–568CrossRef
34.
Zurück zum Zitat Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5097CrossRef Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5097CrossRef
35.
Zurück zum Zitat Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou XL, Burke K (2009) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 102:039902CrossRef Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou XL, Burke K (2009) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 102:039902CrossRef
36.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
37.
Zurück zum Zitat Heyd J, Scuseria GE, Ernzerhof MJ (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRef Heyd J, Scuseria GE, Ernzerhof MJ (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRef
38.
Zurück zum Zitat Heyd J, Scuseria GE, Ernzerhof MJ (2006) Erratum: hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906CrossRef Heyd J, Scuseria GE, Ernzerhof MJ (2006) Erratum: hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906CrossRef
39.
Zurück zum Zitat Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J (2007) Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 76:054115CrossRef Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J (2007) Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 76:054115CrossRef
40.
Zurück zum Zitat Voigt W (1928) Lehrburch der Kristallphysik, Teubner. Johnson Reprint Corp, Leipzig Voigt W (1928) Lehrburch der Kristallphysik, Teubner. Johnson Reprint Corp, Leipzig
41.
Zurück zum Zitat Reuss A (1929) Berechnung der Fließgrenze von mischkristallen auf grund der plastizitätsbedingungfür Einkristalle. Angew Z Math Mech 9:49–58CrossRef Reuss A (1929) Berechnung der Fließgrenze von mischkristallen auf grund der plastizitätsbedingungfür Einkristalle. Angew Z Math Mech 9:49–58CrossRef
42.
Zurück zum Zitat Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond Sect A 65:349CrossRef Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond Sect A 65:349CrossRef
43.
Zurück zum Zitat Xing MJ, Li BH, Yu ZT, Chen Q (2016) Monoclinic C2/m-20 carbon: a novel superhard sp 3 carbon allotrope. RSC Adv 6:32740–32745CrossRef Xing MJ, Li BH, Yu ZT, Chen Q (2016) Monoclinic C2/m-20 carbon: a novel superhard sp 3 carbon allotrope. RSC Adv 6:32740–32745CrossRef
44.
Zurück zum Zitat Marmier A, Lethbridge ZAD, Walton RI, Smith CW, Parker SC, Evans KE (2010) ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput Phys Commun 181:2102–2115CrossRef Marmier A, Lethbridge ZAD, Walton RI, Smith CW, Parker SC, Evans KE (2010) ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput Phys Commun 181:2102–2115CrossRef
45.
Zurück zum Zitat Fan QY, Wei Q, Chai CC, Yan HY, Zhang MG, Lin ZZ, Zhang ZX, Zhang JQ, Zhang DY (2015) Structural, mechanical, and electronic properties of P3m1-BCN. J Phys Chem Solids 79:89–96CrossRef Fan QY, Wei Q, Chai CC, Yan HY, Zhang MG, Lin ZZ, Zhang ZX, Zhang JQ, Zhang DY (2015) Structural, mechanical, and electronic properties of P3m1-BCN. J Phys Chem Solids 79:89–96CrossRef
46.
Zurück zum Zitat Fan QY, Wei Q, Yan HY, Zhang MG, Zhang ZX, Zhang JQ, Zhang DY (2014) Elastic and electronic properties of Pbca-BN: first-principles calculations. Comput Mater Sci 85:80–87CrossRef Fan QY, Wei Q, Yan HY, Zhang MG, Zhang ZX, Zhang JQ, Zhang DY (2014) Elastic and electronic properties of Pbca-BN: first-principles calculations. Comput Mater Sci 85:80–87CrossRef
47.
Zurück zum Zitat Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101:055504CrossRef Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101:055504CrossRef
48.
Zurück zum Zitat Anderson OL (1963) A simplified method for calculating the debye temperature from elastic constants. J Phys Chem Solids 24:909–917CrossRef Anderson OL (1963) A simplified method for calculating the debye temperature from elastic constants. J Phys Chem Solids 24:909–917CrossRef
49.
Zurück zum Zitat Anderson O L. Physical Acoustics, Academic Press, New York, vol. III (part B), 1965 Anderson O L. Physical Acoustics, Academic Press, New York, vol. III (part B), 1965
50.
Zurück zum Zitat Panda KB, Ravi KS (2006) Determination of elastic constants of titanium diboride (TiB) from first principles using FLAPW implementation of the density functional theory. Comput Mater Sci 35:134–150CrossRef Panda KB, Ravi KS (2006) Determination of elastic constants of titanium diboride (TiB) from first principles using FLAPW implementation of the density functional theory. Comput Mater Sci 35:134–150CrossRef
51.
Zurück zum Zitat Duan YH, Sun Y, Peng MJ, Zhou SG (2014) Anisotropic elastic properties of the Ca–Pb compounds. J Alloys Compd 595:14–21CrossRef Duan YH, Sun Y, Peng MJ, Zhou SG (2014) Anisotropic elastic properties of the Ca–Pb compounds. J Alloys Compd 595:14–21CrossRef
52.
Zurück zum Zitat Cahill DG, Watson KS, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46:6131–6140CrossRef Cahill DG, Watson KS, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46:6131–6140CrossRef
53.
Zurück zum Zitat Fan QY, Chai CC, Wei Q, Yang YT (2017) Thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN under high temperature. Chin J Phys 55:400–411CrossRef Fan QY, Chai CC, Wei Q, Yang YT (2017) Thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN under high temperature. Chin J Phys 55:400–411CrossRef
54.
Zurück zum Zitat Bundy FB, Kasper JS (1967) Hexagonal Diamond—a new form of carbon. J Chem Phys 46:3437–3446CrossRef Bundy FB, Kasper JS (1967) Hexagonal Diamond—a new form of carbon. J Chem Phys 46:3437–3446CrossRef
55.
Zurück zum Zitat Pizzagalli L (2014) Stability and mobility of screw dislocations in 4H, 2H and 3C silicon carbide. Acta Mater 78:236–244CrossRef Pizzagalli L (2014) Stability and mobility of screw dislocations in 4H, 2H and 3C silicon carbide. Acta Mater 78:236–244CrossRef
56.
Zurück zum Zitat Sarasamak K, Limpijumnong S, Lambrecht WRL (2010) Pressure-dependent elastic constants and sound velocities of wurtzite SiC, GaN, InN, ZnO and CdSe and their relation to the high-pressure phase transition: a first-principles study. Phys Rev B 82:035201CrossRef Sarasamak K, Limpijumnong S, Lambrecht WRL (2010) Pressure-dependent elastic constants and sound velocities of wurtzite SiC, GaN, InN, ZnO and CdSe and their relation to the high-pressure phase transition: a first-principles study. Phys Rev B 82:035201CrossRef
57.
Zurück zum Zitat Schulz H, Thiemann KH (1979) Structure parameters and polarity of the wurtzite type compounds Sic—2H and ZnO. Solid State Commun 32:783–785CrossRef Schulz H, Thiemann KH (1979) Structure parameters and polarity of the wurtzite type compounds Sic—2H and ZnO. Solid State Commun 32:783–785CrossRef
58.
Zurück zum Zitat Kackell P, Wenzien B, Bechstedt F (1994) Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations. Phys Rev B 50:10761–10768CrossRef Kackell P, Wenzien B, Bechstedt F (1994) Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations. Phys Rev B 50:10761–10768CrossRef
59.
Zurück zum Zitat Schulz K, Thiemann KH (1979) Structure parameters and polarity of the wurtzite type compounds SiC—2H and ZnO. Solid State Commun 32:783–785CrossRef Schulz K, Thiemann KH (1979) Structure parameters and polarity of the wurtzite type compounds SiC—2H and ZnO. Solid State Commun 32:783–785CrossRef
60.
Zurück zum Zitat Cerva H (1991) High-resolution electron microscopy of diamond hexagonal silicon in low pressure chemical vapor deposited polycrystalline silicon. J Mater Res 6:2324–2336CrossRef Cerva H (1991) High-resolution electron microscopy of diamond hexagonal silicon in low pressure chemical vapor deposited polycrystalline silicon. J Mater Res 6:2324–2336CrossRef
61.
Zurück zum Zitat Xiao SQ, Pirouz P (1992) On diamond-hexagonal germanium. J Mater Res 7:1406–1412CrossRef Xiao SQ, Pirouz P (1992) On diamond-hexagonal germanium. J Mater Res 7:1406–1412CrossRef
62.
Zurück zum Zitat Petrescu ML (2004) Boron nitride theoretical hardness compared to carbon polymorphs. Diam Relat Mater 13:1848–1853CrossRef Petrescu ML (2004) Boron nitride theoretical hardness compared to carbon polymorphs. Diam Relat Mater 13:1848–1853CrossRef
63.
Zurück zum Zitat Lide D R, 73rd ed. (Chemical Rubber, Boca Raton, FL, 1994) Lide D R, 73rd ed. (Chemical Rubber, Boca Raton, FL, 1994)
64.
Zurück zum Zitat Grimsditch M, Zouboulis ES, Polian A (1994) Elastic constants of boron nitride. J Appl Phys 76:832–834CrossRef Grimsditch M, Zouboulis ES, Polian A (1994) Elastic constants of boron nitride. J Appl Phys 76:832–834CrossRef
65.
Zurück zum Zitat Gomez-Abal R, Li X, Scheffler M, Ambrosch-Draxl C (2008) Influence of the core-valence interaction and of the pseudopotential approximation on the electron self-energy in semiconductors. Phys Rev Lett 101:106404CrossRef Gomez-Abal R, Li X, Scheffler M, Ambrosch-Draxl C (2008) Influence of the core-valence interaction and of the pseudopotential approximation on the electron self-energy in semiconductors. Phys Rev Lett 101:106404CrossRef
66.
Zurück zum Zitat Siethoff H, Ahiborn K (1995) The dependence of the Debye temperature on the elastic constants. Phys Status Solidi B 190:179–191CrossRef Siethoff H, Ahiborn K (1995) The dependence of the Debye temperature on the elastic constants. Phys Status Solidi B 190:179–191CrossRef
67.
Zurück zum Zitat Zywietz A, Karch K, Bechstedt F (1996) Influence of polytypism on thermal properties of silicon carbide. Phys Rev B 54:1791–1798CrossRef Zywietz A, Karch K, Bechstedt F (1996) Influence of polytypism on thermal properties of silicon carbide. Phys Rev B 54:1791–1798CrossRef
68.
Zurück zum Zitat Madelung O (2004) Semiconductors: data handbook, 3rd edn. Springer, BerlinCrossRef Madelung O (2004) Semiconductors: data handbook, 3rd edn. Springer, BerlinCrossRef
69.
Zurück zum Zitat Wybourne MN (1999) Properties of crystalline silicon, EMIS Datareviews Series No. 20 edited by R. Hull. INSPEC, London, P165 Wybourne MN (1999) Properties of crystalline silicon, EMIS Datareviews Series No. 20 edited by R. Hull. INSPEC, London, P165
70.
Zurück zum Zitat Slack GA, Glassbrenner CJ (1960) Thermal conductivity of germanium from 3 °K to 1020 °K. Phys Rev 120:782–789CrossRef Slack GA, Glassbrenner CJ (1960) Thermal conductivity of germanium from 3 °K to 1020 °K. Phys Rev 120:782–789CrossRef
Metadaten
Titel
Theoretical investigations of group IV alloys in the Lonsdaleite phase
verfasst von
Qingyang Fan
Changchun Chai
Qun Wei
Kaiqiang Wong
Yuqian Liu
Yintang Yang
Publikationsdatum
16.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1681-6

Weitere Artikel der Ausgabe 4/2018

Journal of Materials Science 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.