Skip to main content
Log in

One-step hydrothermal synthesis and characterisation of SnO2 nanoparticle-loaded TiO2 nanotubes with high photocatalytic performance under sunlight

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The enhancement of the photocatalytic activity of TiO2 nanotubes (TNTs), as a result of heterojunction formation through the addition of SnO2 nanoparticles (NPs) by a simple and straightforward one-step hydrothermal method, is shown. The structure and properties of the as-synthesised composite material are characterised using X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy, Raman spectroscopy and photoluminescence spectroscopy. The SnO2/TNT heterojunction with extremely small SnO2 NPs adhered on the TNT surface was successfully synthesised by a one-step hydrothermal synthesis. The mechanism and factors affecting the photocatalytic activity were verified and clarified. Furthermore, the sample with 2% SnO2 precursor content has the highest photocatalytic activity with a methylene blue degradation efficiency of 74.2% for 180 min under sunlight irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  2. Rao BM, Roy SC (2014) Water assisted crystallization, gas sensing and photo-electrochemical properties of electrochemically synthesized TiO2 nanotube arrays. RSC Adv 4:49108–49114

    Article  Google Scholar 

  3. Liu X, Lin J, Chen X (2013) Synthesis of long TiO2 nanotube arrays with a small diameter for efficient dye-sensitized solar cells. RSC Adv 3:4885–4889

    Article  Google Scholar 

  4. Lim J, Murugan P, Lakshminarasimhan N, Kim JY, Lee JS, Lee SH, Choi W (2014) Synergic photocatalytic effects of nitrogen and niobium co-doping in TiO2 for the redox conversion of aquatic pollutants under visible light. J Catal 310:91–99

    Article  Google Scholar 

  5. Yu C, Zhou W, Yang K, Rong G (2010) Hydrothermal synthesis of hemisphere-like F-doped anatase TiO2 with visible light photocatalytic activity. J Mater Sci 45:5756–5761. https://doi.org/10.1007/s10853-010-4646-6

    Article  Google Scholar 

  6. Reddy NL, Kumar S, Krishnan V, Sathish M, Shankar MV (2017) Multifunctional Cu/Ag quantum dots on TiO2 nanotubes as highly efficient photocatalysts for enhanced solar hydrogen evolution. J Catal 350:226–239

    Article  Google Scholar 

  7. Gallo A, Marelli M, Psaro R, Gombac V, Montini T, Fornasiero P, Pievod R, Santo VD (2012) Bimetallic Au–Pt/TiO2 photocatalysts active under UV-A and simulated sunlight for H2 production from ethanol. Green Chem 14:330–333

    Article  Google Scholar 

  8. Cai FG, Yang F, Jia YF, Ke C, Cheng CH, Zhao Y (2013) Bi2S3-modified TiO2 nanotube arrays: easy fabrication of heterostructure and effective enhancement of photoelectrochemical property. J Mater Sci 48:6001–6007. https://doi.org/10.1007/s10853-013-7396-4

    Article  Google Scholar 

  9. Tennakone K, Bandara J (2001) Photocatalytic activity of dye-sensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites. Appl Catal A Gen 208:335–341

    Article  Google Scholar 

  10. Lin J, Yu JC, Lo D, Lam SK (1999) Photocatalytic activity of rutile Ti1−xSnxO2 solid solutions. J Catal 183:368–372

    Article  Google Scholar 

  11. Pan D, Jiao J, Li Z, Guo Y, Feng C, Liu Y, Wang L, Wu M (2015) Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain Chem Eng 3:2405–2413

    Article  Google Scholar 

  12. Gholipour MR, Dinh CT, Beland F, Do TO (2015) Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7:8187–8208

    Article  Google Scholar 

  13. Shang J, Yao W, Zhua Y, Wub N (2004) Structure and photocatalytic performances of glass/SnO2/TiO2 interface composite film. Appl Catal A Gen 257:25–32

    Article  Google Scholar 

  14. Zhang J, Zhu H, Zheng S, Pan F, Wang T (2009) TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation. ACS Appl Mater Interfaces 1:2111–2114

    Article  Google Scholar 

  15. Kaur N, Shahi SK, Singh V (2015) Synthesis, characterization and photocatalytic activity of magnetically separable γ-Fe2O3/N, Fe codoped TiO2 heterojunction for degradation of Reactive Blue 4 dye. RSC Adv 5:61623–61630

    Article  Google Scholar 

  16. Rajkumar K, Vairaselvi P, Saravanan P, Vinod VTP, Černík M, Kumar RT (2015) Visible-light-driven SnO2/TiO2 nanotube nanocomposite for textile effluent degradation. RSC Adv 5:20424–20431

    Article  Google Scholar 

  17. Greene LE, Law M, Yuhas BD, Yang P (2007) ZnO TiO2 core–shell nanorod/P3HT solar cells. J Phys Chem C 111:18451–18456

    Article  Google Scholar 

  18. Marcì G, Augugliaro V, López-Muñoz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM (2001) Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 1. Surface and bulk characterization. J Phys Chem B 105:1026–1032

    Article  Google Scholar 

  19. Salamat S, Younesi H, Bahramifar N (2017) Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. RSC Adv 7:19391–19405

    Article  Google Scholar 

  20. Luna AL, Valenzuela MA, Colbeau-Justin C, Vázquez P, Rodriguez JL, Avendaño JR, Alfaro S, Tirado S, Garduño A, Rosa JMD (2016) Photocatalytic degradation of gallic acid over CuO–TiO2 composites under UV/Vis LEDs irradiation. Appl Catal A Gen 521:140–148

    Article  Google Scholar 

  21. Hou LR, Yuan CZ, Peng Y (2007) Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J Hazard Mater 139:310–315

    Article  Google Scholar 

  22. Vinodgopal K, Bedja I, Kamat PV (1996) Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem Mater 8:2180–2187

    Article  Google Scholar 

  23. Chen LC, Tsai FR, Fang SH, Ho YC (2009) Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination. Electrochim Acta 54:1304–1311

    Article  Google Scholar 

  24. Fonstad CG, Rediker RH (1971) Electrical properties of high-quality stannic oxide crystals. J Appl Phys 42:2911. doi:10.1063/1.1660648

    Article  Google Scholar 

  25. Xu X, Yang G, Liang J, Ding S, Tang C, Yang H, Yan W, Yang G, Yu D (2014) Fabrication of one-dimensional heterostructured TiO2@SnO2 with enhanced photocatalytic activity. J Mater Chem A 2:116–122

    Article  Google Scholar 

  26. Hellstern HL, Bremholm M, Mamakhel A, Becker J, Iversen BB (2016) Hydrothermal synthesis of TiO2@SnO2 hybrid nanoparticles in a continuous-flow dual-stage reactor. Chemsuschem 9:532–539

    Article  Google Scholar 

  27. Tsai CY, Liu CW, Fan C, Hsi HC, Chang TY (2017) Synthesis of a SnO2/TNT heterojunction nanocomposite as a high-performance photocatalyst. J Phys Chem C 121:6050–6059

    Article  Google Scholar 

  28. Viet PV, Phan BT, Hieu LV, Thi CM (2015) The effect of acid treatment and reactive temperature on the formation of TiO2 nanotubes. J Nanosci Nanotechnol 15:5202–5206

    Article  Google Scholar 

  29. Viet PV, Thi CM, Hieu LV (2016) The high photocatalytic activity of SnO2 nanoparticles synthesized by hydrothermal method. J Nanomater 2016:4231046

    Google Scholar 

  30. Zhao Y, Liu J, Shi L, Shi L, Yuan S, Fang J, Wang Z, Zhang M (2010) Surfactant-free synthesis uniform Ti1−xSnxO2 nanocrystal colloids and their photocatalytic performance. Appl Catal B 100:68–76

    Article  Google Scholar 

  31. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324

    Article  Google Scholar 

  32. Georgescu D, Baia L, Ersen O, Baia M, Simon S (2012) Experimental assessment of the phonon confinement in TiO2 anatase nanocrystallites by Raman spectroscopy. J Raman Spectrosc 43:876–883

    Article  Google Scholar 

  33. Porto SPS, Fleury PA, Damen TC (1967) Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys Rev B 154:522

    Article  Google Scholar 

  34. Qian L, Du ZL, Yang SY, Jin ZS (2005) Raman study of titania nanotube by soft chemical process. J Mol Struct 749:103–107

    Article  Google Scholar 

  35. Peercy PS, Morosin B (1973) Pressure and temperature dependences of the Raman-active phonons in SnO2. Phys Rev B 7:2779

    Article  Google Scholar 

  36. Zuo J, Xu C, Liu X, Wang C, Hu Y, Qian Y (1994) Study of the Raman spectrum of nanometer SnO2. J Appl Phys 75:1835

    Article  Google Scholar 

  37. Xie C, Zhang L, Mo C (1994) Characterization of Raman spectra in nano-SnO2 solids. Phys Status Solidi A 141:K59–K61

    Article  Google Scholar 

  38. Yu KN, Xiong Y, Liu Y, Xiong C (1997) Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Phys Rev B 55:2666

    Article  Google Scholar 

  39. Matossi F (1951) The vibration spectrum of rutile. J Chem Phys 19:1543

    Article  Google Scholar 

  40. Yu JC, Jiaguo Wingkei, Zitao Lizhi (2002) Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816

    Article  Google Scholar 

  41. Li XZ, Li FB (2001) Study of Au/Au3+–TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ Sci Technol 35:2381–2387

    Article  Google Scholar 

  42. Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous Vycor glass. J Phys Chem 89:5017–5021

    Article  Google Scholar 

  43. Zhang WF, Zhang MS, Yin Z, Chen Q (2000) Photoluminescence in anatase titanium dioxide nanocrystals. Appl Phys B Lasers O 70:261–265

    Article  Google Scholar 

  44. Li FB, Li XZ (2002) Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl Catal A Gen 228:15–27

    Article  Google Scholar 

  45. Tang H, Berger H, Schmid PE, Lévy F (1994) Optical properties of anatase (TiO2). Solid State Commun 92:267–271

    Article  Google Scholar 

  46. Aronne A, Fantauzzi M, Imparato C, Atzei D, De Stefano L, D’Errico G, Sannino F, Rea I, Pirrozi D, Elsener B, Pernice P, Rossi A (2017) Electronic properties of TiO2-based materials characterized by high Ti3+ self-doping and low recombination rate of electron–hole pairs. RSC Adv 7:2373–2381

    Article  Google Scholar 

  47. Chang YH, Liu CM, Chen C, Cheng HE (2012) The effect of geometric structure on photoluminescence characteristics of 1-D TiO2 nanotubes and 2-D TiO2 films fabricated by atomic layer deposition. J Electrochem Soc 159:D401–D405

    Article  Google Scholar 

  48. Aïnouche L, Hamadou L, Kadri A, Benbrahim N, Bradai D (2016) Ti3+ states induced band gap reduction and enhanced visible light absorption of TiO2 nanotube arrays: effect of the surface solid fraction factor. Sol Energy Mater Sol Cells 151:179–190

    Article  Google Scholar 

  49. Bonu V, Das A, Amirthapandian S, Dhara S, Tyagi AK (2015) Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO2 nanoparticles. Phys Chem Chem Phys 17:9794–9801

    Article  Google Scholar 

  50. Gaidi M, Hajjaji A, Smirani R, Bessais B, Khakani MA (2010) Structure and photoluminescence of ultrathin films of SnO2 nanoparticles synthesized by means of pulsed laser deposition. J Appl Phys 108:063537

    Article  Google Scholar 

  51. Liu LZ, Xu JQ, Wu XL, Li TH, Shen JC, Chu PK (2013) Optical identification of oxygen vacancy types in SnO2 nanocrystals. Appl Phys Lett 102:031916

    Article  Google Scholar 

  52. Xiong LB, Li JL, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater 2012:831524

    Article  Google Scholar 

  53. Pan X, Yang MQ, Fu X, Zhang N, Xu YJ (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5:3601–3614

    Article  Google Scholar 

  54. Ohtsuka T, Otsuki T (1999) Effect of ultra-violet light irradiation on anodic oxide films on titanium in sulfuric acid solution. J Electroanal Chem 473:272–278

    Article  Google Scholar 

  55. Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2016.87.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Van Viet.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Viet, P., Huy, T.H., Sang, N.X. et al. One-step hydrothermal synthesis and characterisation of SnO2 nanoparticle-loaded TiO2 nanotubes with high photocatalytic performance under sunlight. J Mater Sci 53, 3364–3374 (2018). https://doi.org/10.1007/s10853-017-1762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1762-6

Keywords

Navigation