Skip to main content
Erschienen in: Journal of Materials Science 7/2018

19.12.2017 | Metals

Quantifying the mechanical effects of He, W and He + W ion irradiation on tungsten with spherical nanoindentation

verfasst von: Jordan S. Weaver, Cheng Sun, Yongqiang Wang, Surya R. Kalidindi, Russ P. Doerner, Nathan A. Mara, Siddhartha Pathak

Erschienen in: Journal of Materials Science | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent advances in spherical nanoindentation protocols have proven very useful for capturing the grain-scale mechanical response of different metals. This is achieved by converting the load–displacement response into an effective indentation stress–strain response which reveals latent information such as the elastic–plastic transition or indentation yield strength and work-hardening behavior and subsequently correlating the response with the material structure (e.g., crystal orientation) at the indentation site. Using these protocols, we systematically study and quantify the microscale mechanical effects of He, W, and He + W ion irradiation on commercially pure, polycrystalline tungsten. The indentation stress–strain response is correlated with the crystal orientation from electron backscatter diffraction, the defect structure from transmission electron microscopy micrographs, and the stopping range of ions in matter calculations of displacement damage and He concentration. He-implanted grains show a much higher indentation yield strength and saturation stress compared to W-ion-irradiated grains for the same displacement damage. There is also good agreement between the dispersed barrier hardening model with a barrier strength of 0.5–0.8 and void models (Bacon–Kochs–Scattergood and Osetsky–Bacon models) with the experimentally observed changes in indentation strength due to the presence of He bubbles. This finding indicates that a high density (~ 9 × 1023 m−3) and concentration (~ 1.5 at.%) of small (~ 1 nm diameter) He bubbles can be moderate to strong barriers to dislocation slip in tungsten.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rieth M, Dudarev SL, de Vicente SMG, Aktaa J, Ahlgren T, Autusch S, Armstrong DEJ, Balden M, Baluc N, Barthe MF, Basuki WW, Battabyal M, Becquart CS, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia JB, De Backer A, Domain C, Gaganidze E, Garcia-Rosales C, Gibson J, Gilbert MR, Giusepponi S, Gludovatzj B, Greuner H, Heinola K, Hoschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, Lopez-Ruiz P, Maier H, Matejicek J, Mishra TP, Muhammed M, Munoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordas N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts SG, Romaner L, Rosinski M, Sanchez M, Schulmeyer W, Traxler H, Urena A, van der Laan JG, Veleva L, Wahlberg S, Walter M, Weber T, Weitkamp T, Wurster S, Yar MA, You JH, Zivelonghi A (2013) Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J Nucl Mater 432(1–3):482–500. https://doi.org/10.1016/j.jnucmat.2012.08.018 CrossRef Rieth M, Dudarev SL, de Vicente SMG, Aktaa J, Ahlgren T, Autusch S, Armstrong DEJ, Balden M, Baluc N, Barthe MF, Basuki WW, Battabyal M, Becquart CS, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia JB, De Backer A, Domain C, Gaganidze E, Garcia-Rosales C, Gibson J, Gilbert MR, Giusepponi S, Gludovatzj B, Greuner H, Heinola K, Hoschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, Lopez-Ruiz P, Maier H, Matejicek J, Mishra TP, Muhammed M, Munoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordas N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts SG, Romaner L, Rosinski M, Sanchez M, Schulmeyer W, Traxler H, Urena A, van der Laan JG, Veleva L, Wahlberg S, Walter M, Weber T, Weitkamp T, Wurster S, Yar MA, You JH, Zivelonghi A (2013) Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J Nucl Mater 432(1–3):482–500. https://​doi.​org/​10.​1016/​j.​jnucmat.​2012.​08.​018 CrossRef
2.
Zurück zum Zitat Zinkle SJ, Busby JT (2009) Structural materials for fission & fusion Energy. Mater Today 12(11):12–19CrossRef Zinkle SJ, Busby JT (2009) Structural materials for fission & fusion Energy. Mater Today 12(11):12–19CrossRef
6.
Zurück zum Zitat Was GS (2007) Fundamentals of radiation materials science. Springer, New York Was GS (2007) Fundamentals of radiation materials science. Springer, New York
14.
Zurück zum Zitat James G, David A (2014) Steve R (2014) The micro-mechanical properties of ion irradiated tungsten. Phys Scr T159:014056CrossRef James G, David A (2014) Steve R (2014) The micro-mechanical properties of ion irradiated tungsten. Phys Scr T159:014056CrossRef
15.
Zurück zum Zitat Weaver JS, Pathak S, Reichardt A, Vo HT, Maloy SA, Hosemann P, Mara NA (2017) Spherical nanoindentation of proton irradiated 304 stainless steel: a comparison of small scale mechanical test techniques for measuring irradiation hardening. J Nucl Mater 493:368–379CrossRef Weaver JS, Pathak S, Reichardt A, Vo HT, Maloy SA, Hosemann P, Mara NA (2017) Spherical nanoindentation of proton irradiated 304 stainless steel: a comparison of small scale mechanical test techniques for measuring irradiation hardening. J Nucl Mater 493:368–379CrossRef
21.
Zurück zum Zitat Hertz H, Jones DE, Schott GA (1896) Miscellaneous papers. Macmillan and co, London, New York Hertz H, Jones DE, Schott GA (1896) Miscellaneous papers. Macmillan and co, London, New York
22.
Zurück zum Zitat Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge, New YorkCrossRef Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge, New YorkCrossRef
23.
Zurück zum Zitat Tabor D (1951) The hardness and strength of metals. J Inst Met 79(1):1–18 Tabor D (1951) The hardness and strength of metals. J Inst Met 79(1):1–18
26.
Zurück zum Zitat Pathak S, Kalidindi SR, Weaver JS, Wang Y, Doerner R, Mara NA (accepted) Probing nanoscale damage gradients in ion-irradiated metals using spherical nanoindentation. Scientific Reports Pathak S, Kalidindi SR, Weaver JS, Wang Y, Doerner R, Mara NA (accepted) Probing nanoscale damage gradients in ion-irradiated metals using spherical nanoindentation. Scientific Reports
37.
Zurück zum Zitat Ziegler JF, Biersack JP (2008) SRIM Program. IBM Corp, Yorktown Ziegler JF, Biersack JP (2008) SRIM Program. IBM Corp, Yorktown
42.
Zurück zum Zitat Jenkins ML, Kirk MA (2000) Characterisation of radiation damage by transmission electron microscopy. CRC Press, Boca RatonCrossRef Jenkins ML, Kirk MA (2000) Characterisation of radiation damage by transmission electron microscopy. CRC Press, Boca RatonCrossRef
45.
Zurück zum Zitat Vachhani SJ, Trujillo C, Mara N, Livescu V, Bronkhorst C, Gray GT, Cerreta E (2016) Local mechanical property evolution during high strain-rate deformation of tantalum. J Dyn Behav Mater 2(4):511–520CrossRef Vachhani SJ, Trujillo C, Mara N, Livescu V, Bronkhorst C, Gray GT, Cerreta E (2016) Local mechanical property evolution during high strain-rate deformation of tantalum. J Dyn Behav Mater 2(4):511–520CrossRef
46.
Zurück zum Zitat Tabor D (1951) The hardness of metals. Clarendon Press, Oxford Tabor D (1951) The hardness of metals. Clarendon Press, Oxford
47.
Zurück zum Zitat Tabor D (1956) The physical meaning of indentation and scratch hardness. Br J Appl Phys 7(5):159CrossRef Tabor D (1956) The physical meaning of indentation and scratch hardness. Br J Appl Phys 7(5):159CrossRef
49.
Zurück zum Zitat Patel DK, Kalidindi SR (2017) Estimating the slip resistance from spherical nanoindentation and orientation measurements in polycrystalline samples of cubic metals. Int J Plast 92:19–30CrossRef Patel DK, Kalidindi SR (2017) Estimating the slip resistance from spherical nanoindentation and orientation measurements in polycrystalline samples of cubic metals. Int J Plast 92:19–30CrossRef
52.
Zurück zum Zitat Durst K, Göken M, Pharr GM (2008) Indentation size effect in spherical and pyramidal indentations. J Phys D Appl Phys 41(7):074005CrossRef Durst K, Göken M, Pharr GM (2008) Indentation size effect in spherical and pyramidal indentations. J Phys D Appl Phys 41(7):074005CrossRef
53.
Zurück zum Zitat Michalske T, Houston J (1998) Dislocation nucleation at nano-scale mechanical contacts. Acta Mater 46(2):391–396CrossRef Michalske T, Houston J (1998) Dislocation nucleation at nano-scale mechanical contacts. Acta Mater 46(2):391–396CrossRef
54.
Zurück zum Zitat Suresh S, Nieh T-G, Choi B (1999) Nano-indentation of copper thin films on silicon substrates. Scr Mater 41(9):951–957CrossRef Suresh S, Nieh T-G, Choi B (1999) Nano-indentation of copper thin films on silicon substrates. Scr Mater 41(9):951–957CrossRef
58.
Zurück zum Zitat Bushby AJ, Roberts SG, Hardie CD (2012) Nanoindentation investigation of ion-irradiated Fe–Cr alloys using spherical indenters. J Mater Res 27(1):85–90CrossRef Bushby AJ, Roberts SG, Hardie CD (2012) Nanoindentation investigation of ion-irradiated Fe–Cr alloys using spherical indenters. J Mater Res 27(1):85–90CrossRef
61.
Zurück zum Zitat Nembach E (1996) Particle strengthening of metals and alloys. Wiley, New York Nembach E (1996) Particle strengthening of metals and alloys. Wiley, New York
63.
Zurück zum Zitat Friedel J (1963) On the elastic limit of crystals. In: Thomas G, Washburn J (eds) Electron Microscopy and Strength of Crystals. Interscience, New York, p 605 Friedel J (1963) On the elastic limit of crystals. In: Thomas G, Washburn J (eds) Electron Microscopy and Strength of Crystals. Interscience, New York, p 605
67.
Zurück zum Zitat Hirth JP, Lothe J (1982) Theory of Dislocations. Wiley, New York Hirth JP, Lothe J (1982) Theory of Dislocations. Wiley, New York
70.
Zurück zum Zitat Zhang Z, Hasenhuetl E, Yabuuchi K, Kimura A (2016) Evaluation of helium effect on ion-irradiation hardening in pure tungsten by nano-indentation method. Nucl Mater Energy 9:539–546CrossRef Zhang Z, Hasenhuetl E, Yabuuchi K, Kimura A (2016) Evaluation of helium effect on ion-irradiation hardening in pure tungsten by nano-indentation method. Nucl Mater Energy 9:539–546CrossRef
73.
Zurück zum Zitat Armstrong D, Wilkinson A, Roberts S (2011) (2011) Mechanical properties of ion-implanted tungsten–5 wt% tantalum. Phys Scr T145:014076CrossRef Armstrong D, Wilkinson A, Roberts S (2011) (2011) Mechanical properties of ion-implanted tungsten–5 wt% tantalum. Phys Scr T145:014076CrossRef
74.
Zurück zum Zitat Miyamoto M, Nishijima D, Baldwin M, Doerner R, Ueda Y, Yasunaga K, Yoshida N, Ono K (2011) Microscopic damage of tungsten exposed to deuterium–helium mixture plasma in PISCES and its impacts on retention property. J Nucl Mater 415(1):S657–S660CrossRef Miyamoto M, Nishijima D, Baldwin M, Doerner R, Ueda Y, Yasunaga K, Yoshida N, Ono K (2011) Microscopic damage of tungsten exposed to deuterium–helium mixture plasma in PISCES and its impacts on retention property. J Nucl Mater 415(1):S657–S660CrossRef
91.
Zurück zum Zitat Dunn A, Dingreville R, Capolungo L (2016) Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated α -Fe. Model Simul Mater Sci Eng 24(1):015005CrossRef Dunn A, Dingreville R, Capolungo L (2016) Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated α -Fe. Model Simul Mater Sci Eng 24(1):015005CrossRef
Metadaten
Titel
Quantifying the mechanical effects of He, W and He + W ion irradiation on tungsten with spherical nanoindentation
verfasst von
Jordan S. Weaver
Cheng Sun
Yongqiang Wang
Surya R. Kalidindi
Russ P. Doerner
Nathan A. Mara
Siddhartha Pathak
Publikationsdatum
19.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1833-8

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.