Skip to main content
Erschienen in: Journal of Materials Science 7/2019

06.12.2018 | Energy materials

Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries

verfasst von: Chengjie Li, Jianye Li, Yingchao Zhang, Xin Cui, Haibo Lei, Guofu Li

Erschienen in: Journal of Materials Science | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sodium-ion batteries (SIBs) are regarded as one of the most promising alternatives to lithium-ion batteries (LIBs) for large-scale energy stationary applications due to the abundant reserve of sodium. However, it is still challenging to develop low-cost and high-performance anode materials for SIBs. Herein, heteroatom-doped hard carbons with hierarchically porous and disordered structures are prepared via pyrolysis of natural biomass cucumber stem. The electrochemical performances of the biomass carbon are significantly influenced by the carbonization temperatures due to the different microstructures and heteroatomic contents. The biomass carbon carbonized at 1000 °C delivers the highest reversible capacity of 337.9 mAh g−1 while used as the anode material for SIBs. Furthermore, the biomass carbon achieves a sheet-like morphology with macroscopically open structure after the hydrothermal activation of KOH. It is worth noting that the activated carbon exhibits a high reversible capacity (458.6 mAh g−1), an excellent rate capability (102.6 mAh g−1 at 10 A g−1) and a cycling stability (198.6 mAh g−1 at 0.2 A g−1 over 500 cycles). The enhanced electrochemical properties of the activated carbon can be attributed to the larger surface area and highly developed nanopores, which could significantly facilitate the transport and storage of sodium ions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef
2.
Zurück zum Zitat Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRef Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRef
3.
Zurück zum Zitat Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef
4.
Zurück zum Zitat Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295CrossRef Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295CrossRef
5.
Zurück zum Zitat Komaba S, Murata W, Ishikawa T et al (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef Komaba S, Murata W, Ishikawa T et al (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef
6.
Zurück zum Zitat Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef
7.
Zurück zum Zitat Pan HL, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRef Pan HL, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRef
8.
Zurück zum Zitat Ren WH, Zhu ZX, An QY, Mai LQ (2017) Emerging prototype sodium-ion full cells with nanostructured electrode materials. Small 13:1604181CrossRef Ren WH, Zhu ZX, An QY, Mai LQ (2017) Emerging prototype sodium-ion full cells with nanostructured electrode materials. Small 13:1604181CrossRef
9.
Zurück zum Zitat Yuan DD, Liang XM, Wu L, Cao YL, Ai XP, Feng JW, Yang HX (2014) A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries. Adv Mater 26:6301–6306CrossRef Yuan DD, Liang XM, Wu L, Cao YL, Ai XP, Feng JW, Yang HX (2014) A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries. Adv Mater 26:6301–6306CrossRef
10.
Zurück zum Zitat Wang YS, Xiao RJ, Hu YS, Avdeev M, Chen LQ (2015) P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat Commun 6:6954CrossRef Wang YS, Xiao RJ, Hu YS, Avdeev M, Chen LQ (2015) P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat Commun 6:6954CrossRef
11.
Zurück zum Zitat Xu SY, Wang YS, Ben LB et al (2015) Fe-based tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39]O2 designed by a new strategy as a cathode material for sodium-ion batteries. Adv Energy Mater 5:1501156CrossRef Xu SY, Wang YS, Ben LB et al (2015) Fe-based tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39]O2 designed by a new strategy as a cathode material for sodium-ion batteries. Adv Energy Mater 5:1501156CrossRef
12.
Zurück zum Zitat Fang YJ, Xiao LF, Ai XP, Cao YL, Yang HX (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900CrossRef Fang YJ, Xiao LF, Ai XP, Cao YL, Yang HX (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900CrossRef
13.
Zurück zum Zitat Barpanda P, Oyama G, Nishimura S, Chung SC, Yamada A (2014) A 3.8-V earth-abundant sodium battery electrode. Nat Commun 5:4358CrossRef Barpanda P, Oyama G, Nishimura S, Chung SC, Yamada A (2014) A 3.8-V earth-abundant sodium battery electrode. Nat Commun 5:4358CrossRef
14.
Zurück zum Zitat Li C, Miao X, Chu W, Wua P, Tong DG (2015) Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. J Mater Chem A 3:8265–8271CrossRef Li C, Miao X, Chu W, Wua P, Tong DG (2015) Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. J Mater Chem A 3:8265–8271CrossRef
15.
Zurück zum Zitat Qi YR, Mu LQ, Zhao JM, Hu YS, Liu HZ, Dai S (2015) Superior Na-storage performance of low-temperature-synthesized Na3(VO1−xPO4)2F1+2x (0 ≤ x ≤ 1) nanoparticles for Na-ion batteries. Angew Chem 54:9911–9916CrossRef Qi YR, Mu LQ, Zhao JM, Hu YS, Liu HZ, Dai S (2015) Superior Na-storage performance of low-temperature-synthesized Na3(VO1−xPO4)2F1+2x (0 ≤ x ≤ 1) nanoparticles for Na-ion batteries. Angew Chem 54:9911–9916CrossRef
16.
Zurück zum Zitat Cao YL, Xiao LF, Sushko ML et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef Cao YL, Xiao LF, Sushko ML et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef
17.
Zurück zum Zitat Song JX, Yu ZX, Gordin ML, Li XL, Peng HS, Wang DH (2015) Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 9:11933–11941CrossRef Song JX, Yu ZX, Gordin ML, Li XL, Peng HS, Wang DH (2015) Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 9:11933–11941CrossRef
18.
Zurück zum Zitat Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM, Zhang XB (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6:56–60CrossRef Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM, Zhang XB (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6:56–60CrossRef
19.
Zurück zum Zitat Qie L, Chen WM, Wang ZH et al (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRef Qie L, Chen WM, Wang ZH et al (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRef
20.
Zurück zum Zitat Wang XL, Li G, Hassan FM et al (2015) Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. Nano Energy 15:746–754CrossRef Wang XL, Li G, Hassan FM et al (2015) Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. Nano Energy 15:746–754CrossRef
21.
Zurück zum Zitat Tang K, Fu LJ, White RJ, Yu LH, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRef Tang K, Fu LJ, White RJ, Yu LH, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRef
22.
Zurück zum Zitat Sun Y, Zhao L, Pan HL et al (2013) Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun 4:1870CrossRef Sun Y, Zhao L, Pan HL et al (2013) Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun 4:1870CrossRef
23.
Zurück zum Zitat Li G, Luo D, Wang XL, Seo MH, Hemmati S, Yu AP, Chen ZW (2017) Enhanced reversible sodium-ion intercalation by synergistic coupling of few-layered MoS2 and S-doped graphene. Adv Funct Mater 27:1702562CrossRef Li G, Luo D, Wang XL, Seo MH, Hemmati S, Yu AP, Chen ZW (2017) Enhanced reversible sodium-ion intercalation by synergistic coupling of few-layered MoS2 and S-doped graphene. Adv Funct Mater 27:1702562CrossRef
24.
Zurück zum Zitat Zhu YJ, Wen Y, Fan XL (2015) Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9:3254–3264CrossRef Zhu YJ, Wen Y, Fan XL (2015) Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9:3254–3264CrossRef
25.
Zurück zum Zitat Walter M, Doswald S, Kovalenko MV (2016) Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries. J Mater Chem A 4:7053–7059CrossRef Walter M, Doswald S, Kovalenko MV (2016) Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries. J Mater Chem A 4:7053–7059CrossRef
26.
Zurück zum Zitat Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef
27.
Zurück zum Zitat Xu YX, Lin ZY, Zhong X, Papandrea B, Huang Y, Duan XF (2015) Solvated graphene frameworks as high-performance anodes for lithium-ion batterie. Angew Chem 54:5435–5440CrossRef Xu YX, Lin ZY, Zhong X, Papandrea B, Huang Y, Duan XF (2015) Solvated graphene frameworks as high-performance anodes for lithium-ion batterie. Angew Chem 54:5435–5440CrossRef
28.
Zurück zum Zitat Li W, Zhou M, Li HM, Wang KL, Cheng SJ, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8:2916–2921CrossRef Li W, Zhou M, Li HM, Wang KL, Cheng SJ, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8:2916–2921CrossRef
29.
Zurück zum Zitat Qie L, Chen WM, Xiong XQ, Hu CC, Zou F, Hu P, Huang YH (2015) Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv Sci 2:1500195CrossRef Qie L, Chen WM, Xiong XQ, Hu CC, Zou F, Hu P, Huang YH (2015) Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv Sci 2:1500195CrossRef
30.
Zurück zum Zitat Xu JT, Wang M, Wickramaratne NP, Jaroniec M, Dou SX, Dai LM (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048CrossRef Xu JT, Wang M, Wickramaratne NP, Jaroniec M, Dou SX, Dai LM (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048CrossRef
31.
Zurück zum Zitat Xu DF, Chen CJ, Xie J et al (2016) A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6:1501929CrossRef Xu DF, Chen CJ, Xie J et al (2016) A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6:1501929CrossRef
32.
Zurück zum Zitat Yang JQ, Zhou XL, Wu DH, Zhao XD, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29:1604108–1604112CrossRef Yang JQ, Zhou XL, Wu DH, Zhao XD, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29:1604108–1604112CrossRef
33.
Zurück zum Zitat Jo C, Park Y, Jeong J, Lee KT, Lee J (2015) Structural effect on electrochemical performance of ordered porous carbon electrodes for Na-ion batteries. ACS Appl Mater Interfaces 7:11748–11754CrossRef Jo C, Park Y, Jeong J, Lee KT, Lee J (2015) Structural effect on electrochemical performance of ordered porous carbon electrodes for Na-ion batteries. ACS Appl Mater Interfaces 7:11748–11754CrossRef
34.
Zurück zum Zitat Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB (2016) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRef Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB (2016) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRef
35.
Zurück zum Zitat Wang L, Yang CL, Dou S et al (2016) Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochim Acta 219:592–603CrossRef Wang L, Yang CL, Dou S et al (2016) Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochim Acta 219:592–603CrossRef
36.
Zurück zum Zitat Zou GQ, Jia XN, Huang ZD et al (2016) Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries. Electrochim Acta 196:413–421CrossRef Zou GQ, Jia XN, Huang ZD et al (2016) Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries. Electrochim Acta 196:413–421CrossRef
37.
Zurück zum Zitat Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XW (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217–1502223CrossRef Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XW (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217–1502223CrossRef
38.
Zurück zum Zitat Hong KL, Qie L, Zeng R et al (2014) Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A 2:12733–12738CrossRef Hong KL, Qie L, Zeng R et al (2014) Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A 2:12733–12738CrossRef
39.
Zurück zum Zitat Liu P, Li YM, Hu YS, Li H, Chen LQ, Huang XJ (2016) A waste biomass derived hard carbon as high-performance anode material for sodium-ion batteries. J Mater Chem A 4:13046–13052CrossRef Liu P, Li YM, Hu YS, Li H, Chen LQ, Huang XJ (2016) A waste biomass derived hard carbon as high-performance anode material for sodium-ion batteries. J Mater Chem A 4:13046–13052CrossRef
40.
Zurück zum Zitat Gaddam RR, Yang DF, Narayan R, Raju KV, Kumar NA, Zhao XS (2016) Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26:346–352CrossRef Gaddam RR, Yang DF, Narayan R, Raju KV, Kumar NA, Zhao XS (2016) Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26:346–352CrossRef
41.
Zurück zum Zitat Lv WM, Wen FS, Xiang JY et al (2015) Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim Acta 176:533–541CrossRef Lv WM, Wen FS, Xiang JY et al (2015) Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim Acta 176:533–541CrossRef
42.
Zurück zum Zitat Zhang F, Wang KX, Li GD, Chen JS (2009) Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem Commun 11:130–133CrossRef Zhang F, Wang KX, Li GD, Chen JS (2009) Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem Commun 11:130–133CrossRef
43.
Zurück zum Zitat Chen L, Zhang YZ, Lin CH et al (2014) Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J Mater Chem A 2:9684–9690CrossRef Chen L, Zhang YZ, Lin CH et al (2014) Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J Mater Chem A 2:9684–9690CrossRef
44.
Zurück zum Zitat Zhu YY, Chen MM, Li Q, Yuan C, Wang CY (2018) A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 129:695–701CrossRef Zhu YY, Chen MM, Li Q, Yuan C, Wang CY (2018) A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 129:695–701CrossRef
45.
Zurück zum Zitat Lu MJ, Yu WH, Shi J, Liu W, Chen SG, Wang X, Wang HL (2017) Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. Electrochim Acta 251:396–406CrossRef Lu MJ, Yu WH, Shi J, Liu W, Chen SG, Wang X, Wang HL (2017) Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. Electrochim Acta 251:396–406CrossRef
46.
Zurück zum Zitat Hao R, Yang Y, Wang H et al (2018) Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 45:220–228CrossRef Hao R, Yang Y, Wang H et al (2018) Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 45:220–228CrossRef
47.
Zurück zum Zitat Qin DC, Liu ZY, Zhao YZ, Xu GY, Zhang F, Zhang XZ (2018) A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon 130:664–671CrossRef Qin DC, Liu ZY, Zhao YZ, Xu GY, Zhang F, Zhang XZ (2018) A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon 130:664–671CrossRef
48.
Zurück zum Zitat Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S (2016) Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim Acta 190:337–345CrossRef Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S (2016) Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim Acta 190:337–345CrossRef
49.
Zurück zum Zitat Zhang YC, You Y, Xin S et al (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127CrossRef Zhang YC, You Y, Xin S et al (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127CrossRef
50.
Zurück zum Zitat Niu J, Liang JJ, Shao R et al (2017) Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy 41:285–292CrossRef Niu J, Liang JJ, Shao R et al (2017) Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy 41:285–292CrossRef
51.
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
52.
Zurück zum Zitat Zhu YW, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of grapheme. Science 332:1537–1541CrossRef Zhu YW, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of grapheme. Science 332:1537–1541CrossRef
53.
Zurück zum Zitat Jiang J, Zhu JH, Ai W et al (2014) Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ Sci 7:2670–2679CrossRef Jiang J, Zhu JH, Ai W et al (2014) Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ Sci 7:2670–2679CrossRef
54.
Zurück zum Zitat Wang ZH, Qie L, Yuan LX, Zhang WH, Hu XL, Huang YH (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334CrossRef Wang ZH, Qie L, Yuan LX, Zhang WH, Hu XL, Huang YH (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334CrossRef
55.
Zurück zum Zitat Zheng YH, Wang YS, Lu YX, Hu YS, Li J (2017) A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy 39:489–498CrossRef Zheng YH, Wang YS, Lu YX, Hu YS, Li J (2017) A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy 39:489–498CrossRef
56.
Zurück zum Zitat Su CY, Xu YP, Zhang WJ, Zhao JW, Tang XH, Tsai CH, Li LJ (2009) Electrical and spectroscopic characterizations of ultra-Large reduced graphene oxide monolayers. Chem Mater 21:5674–5680CrossRef Su CY, Xu YP, Zhang WJ, Zhao JW, Tang XH, Tsai CH, Li LJ (2009) Electrical and spectroscopic characterizations of ultra-Large reduced graphene oxide monolayers. Chem Mater 21:5674–5680CrossRef
57.
Zurück zum Zitat Li DD, Ding LX, Chen HB, Wang SQ, Li Z, Zhu M, Wang HH (2014) Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries. J Mater Chem A 2:16617–16622CrossRef Li DD, Ding LX, Chen HB, Wang SQ, Li Z, Zhu M, Wang HH (2014) Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries. J Mater Chem A 2:16617–16622CrossRef
58.
Zurück zum Zitat Xiao LF, Lu HY, Fang YJ et al (2018) Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv Energy Mater 8:1703238CrossRef Xiao LF, Lu HY, Fang YJ et al (2018) Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv Energy Mater 8:1703238CrossRef
59.
Zurück zum Zitat Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, Qu LT (2011) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18CrossRef Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, Qu LT (2011) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18CrossRef
60.
Zurück zum Zitat Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitor. Adv Mater 24:6348–6355CrossRef Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitor. Adv Mater 24:6348–6355CrossRef
61.
Zurück zum Zitat Ding J, Wang HL, Li Z et al (2015) Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ Sci 8:941–955CrossRef Ding J, Wang HL, Li Z et al (2015) Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ Sci 8:941–955CrossRef
62.
Zurück zum Zitat Shao YY, Xiao J, Wang W et al (2013) Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett 13:3909–3914CrossRef Shao YY, Xiao J, Wang W et al (2013) Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett 13:3909–3914CrossRef
63.
Zurück zum Zitat Peng H, Ma G, Sun K, Mu J, Lei Z (2014) One-step preparation of ultrathin nitrogen-doped carbon nanosheets with ultrahigh pore volume for high-performance supercapacitors. J Mater Chem A 2:17297–17301CrossRef Peng H, Ma G, Sun K, Mu J, Lei Z (2014) One-step preparation of ultrathin nitrogen-doped carbon nanosheets with ultrahigh pore volume for high-performance supercapacitors. J Mater Chem A 2:17297–17301CrossRef
64.
Zurück zum Zitat Peng H, Ma GF, Sun KJ, Zhang ZG, Yang Q, Lei ZQ (2016) Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochim Acta 190:862–871CrossRef Peng H, Ma GF, Sun KJ, Zhang ZG, Yang Q, Lei ZQ (2016) Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochim Acta 190:862–871CrossRef
65.
Zurück zum Zitat Shen W, Wang C, Xu QJ, Liu HM, Wang YG (2014) Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials. Adv Energy Mater 5:1400982CrossRef Shen W, Wang C, Xu QJ, Liu HM, Wang YG (2014) Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials. Adv Energy Mater 5:1400982CrossRef
66.
Zurück zum Zitat Ding J, Li Z, Cui K, Boyer S, Karpuzov D, Mitlin D (2016) Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 23:129–137CrossRef Ding J, Li Z, Cui K, Boyer S, Karpuzov D, Mitlin D (2016) Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 23:129–137CrossRef
67.
Zurück zum Zitat DatsyukV Kalyva M, Papagelis K et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRef DatsyukV Kalyva M, Papagelis K et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRef
68.
Zurück zum Zitat Shao Y, Zhang S, Engelhard MH et al (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496CrossRef Shao Y, Zhang S, Engelhard MH et al (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496CrossRef
69.
Zurück zum Zitat Sun N, Liu H, Xu B (2015) Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J Mater Chem A 3:20560–20566CrossRef Sun N, Liu H, Xu B (2015) Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J Mater Chem A 3:20560–20566CrossRef
70.
Zurück zum Zitat Li YM, Hu YS, Titirici M, Chen LQ, Huang XJ (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659CrossRef Li YM, Hu YS, Titirici M, Chen LQ, Huang XJ (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659CrossRef
71.
Zurück zum Zitat Luo XF, Yang CH, Peng YY, Pu NW, Ger MD, Hsieh CT, Chang JK (2015) Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J Mater Chem A 3:10320–10326CrossRef Luo XF, Yang CH, Peng YY, Pu NW, Ger MD, Hsieh CT, Chang JK (2015) Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J Mater Chem A 3:10320–10326CrossRef
72.
Zurück zum Zitat Li DD, Chen HB, Liu GX, Wei M, Ding LX, Wang SQ, Wang HH (2015) Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94:888–894CrossRef Li DD, Chen HB, Liu GX, Wei M, Ding LX, Wang SQ, Wang HH (2015) Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94:888–894CrossRef
73.
Zurück zum Zitat Qiu S, Xiao LF, Sushko ML et al (2017) Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater 7:1700403CrossRef Qiu S, Xiao LF, Sushko ML et al (2017) Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater 7:1700403CrossRef
74.
Zurück zum Zitat Yan D, Yu CY, Zhang XZ et al (2016) Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim Acta 191:385–391CrossRef Yan D, Yu CY, Zhang XZ et al (2016) Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim Acta 191:385–391CrossRef
75.
Zurück zum Zitat Fu LJ, Tang K, Song KP, van Aken PA, Yu Y, Maier J (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6:1384–1389CrossRef Fu LJ, Tang K, Song KP, van Aken PA, Yu Y, Maier J (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6:1384–1389CrossRef
76.
Zurück zum Zitat Wang PZ, Qiao B, Du YC, Li YF, Zhou XS, Dai ZH, Bao JC (2015) Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J Phys Chem C 119:21336–21344CrossRef Wang PZ, Qiao B, Du YC, Li YF, Zhou XS, Dai ZH, Bao JC (2015) Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J Phys Chem C 119:21336–21344CrossRef
77.
Zurück zum Zitat Chen L, Wang Z, He C, Zhao N, Shi C, Liu E, Li J (2013) Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. ACS Appl Mater Interfaces 5:9537–9545CrossRef Chen L, Wang Z, He C, Zhao N, Shi C, Liu E, Li J (2013) Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. ACS Appl Mater Interfaces 5:9537–9545CrossRef
78.
Zurück zum Zitat Niu J, Zhang S, Niu Y, Song HH, Chen XH, Zhou JS, Cao B (2015) Direct amination of Si nanoparticles for the preparation of Si @ ultrathin SiOx @ graphene nanosheets as high performance lithium-ion battery anodes. J Mater Chem A 3:19892–19900CrossRef Niu J, Zhang S, Niu Y, Song HH, Chen XH, Zhou JS, Cao B (2015) Direct amination of Si nanoparticles for the preparation of Si @ ultrathin SiOx @ graphene nanosheets as high performance lithium-ion battery anodes. J Mater Chem A 3:19892–19900CrossRef
79.
Zurück zum Zitat Nakajima T, Gupta V, Ohzawa Y, Groult H, Mazej Z, Žemva B (2004) Influence of cointercalated HF on the electrochemical behavior of highly fluorinated graphite. J Power Sources 137:80–87CrossRef Nakajima T, Gupta V, Ohzawa Y, Groult H, Mazej Z, Žemva B (2004) Influence of cointercalated HF on the electrochemical behavior of highly fluorinated graphite. J Power Sources 137:80–87CrossRef
80.
Zurück zum Zitat Xiao LF, Cao YL, Henderson WA et al (2016) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288CrossRef Xiao LF, Cao YL, Henderson WA et al (2016) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288CrossRef
81.
Zurück zum Zitat Wang QQ, Zhu XS, Liu YH, Fang YY, Zhou XS, Bao JC (2017) Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 127:658–666CrossRef Wang QQ, Zhu XS, Liu YH, Fang YY, Zhou XS, Bao JC (2017) Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 127:658–666CrossRef
82.
Zurück zum Zitat Yan D, Yu C, Zhang X, Li J, Li J, Lu T, Pan L (2017) Enhanced electrochemical performances of anatase TiO2 nanotubes by synergetic doping of Ni and N for sodium-ion batteries. Electrochim Acta 254:130–139CrossRef Yan D, Yu C, Zhang X, Li J, Li J, Lu T, Pan L (2017) Enhanced electrochemical performances of anatase TiO2 nanotubes by synergetic doping of Ni and N for sodium-ion batteries. Electrochim Acta 254:130–139CrossRef
83.
Zurück zum Zitat Hou HS, Banks CE, JingM Zhang Y, Ji XB (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRef Hou HS, Banks CE, JingM Zhang Y, Ji XB (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866CrossRef
Metadaten
Titel
Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries
verfasst von
Chengjie Li
Jianye Li
Yingchao Zhang
Xin Cui
Haibo Lei
Guofu Li
Publikationsdatum
06.12.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03229-2

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Science 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.