Skip to main content
Erschienen in: Journal of Materials Science 11/2019

26.02.2019 | Chemical routes to materials

Porous crumpled graphene with improved specific surface area based on hydrophilic pre-reduction and its adsorption performance

verfasst von: Jinlin Zhao, Zhihong Tang, Yishu Qiu, Xiaolin Gao, Jia Wan, Wenrong Bi, Shuling Shen, Junhe Yang

Erschienen in: Journal of Materials Science | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Porous crumpled graphene (PCG) with high specific surface area was prepared by aerosol method. The combination of hydrophilic pretreatment of graphene oxide (GO) and subsequent NaOH activation was the key to improve the specific surface area of PCG. Hydrophilic pretreatment of GO by ammonia prevented GO from further reduction by NaOH before spray drying and thus alleviated the aggregation of GO induced by the reduction by NaOH; subsequently, the specific surface area was improved. The specific surface area of NaOH-GO-N-4 was up to 846.31 m2 g−1, which was two times as large as that of NaOH-GO-4. Due to the high specific surface area and spherical structure, a maximum rhodamine B (RB) adsorption capacity of 340.65 mg g−1 was obtained of NaOH-GO-N-4, which was much higher than that of activated carbon with the specific surface area of 1422 m2 g−1. The kinetic data fitted the pseudo-second-order model, and the equilibrium data were well fitted by the Langmuir isotherm. The thermodynamic analysis indicated that the adsorption of RB was a spontaneous and exothermic process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
Zurück zum Zitat Zhang YP, Li DL, Tan XJ et al (2013) High quality graphene sheets from graphene oxide by hot-pressing. Carbon 54:143–148CrossRef Zhang YP, Li DL, Tan XJ et al (2013) High quality graphene sheets from graphene oxide by hot-pressing. Carbon 54:143–148CrossRef
3.
Zurück zum Zitat Zhang YP, Luo CZ, Li WP, Pan CX (2013) Strain induced chemical potential difference between monolayer graphene sheets. Nanoscale 5:2616–2619CrossRef Zhang YP, Luo CZ, Li WP, Pan CX (2013) Strain induced chemical potential difference between monolayer graphene sheets. Nanoscale 5:2616–2619CrossRef
4.
5.
Zurück zum Zitat Castaldo R, Lama GC, Aprea P et al (2017) Effect of the oxidation degree on self-assembly, adsorption and barrier properties of nano-graphene. Microporous Mesoporous Mater 260:102–115CrossRef Castaldo R, Lama GC, Aprea P et al (2017) Effect of the oxidation degree on self-assembly, adsorption and barrier properties of nano-graphene. Microporous Mesoporous Mater 260:102–115CrossRef
6.
Zurück zum Zitat Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. Appl Mater Interfaces 5:425–432CrossRef Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. Appl Mater Interfaces 5:425–432CrossRef
7.
Zurück zum Zitat Han Q, Yang L, Liang Q, Ding M (2017) Three-dimensional hierarchical porous graphene aerogel for efficient adsorption and preconcentration of chemical warfare agents. Carbon 122:556–563CrossRef Han Q, Yang L, Liang Q, Ding M (2017) Three-dimensional hierarchical porous graphene aerogel for efficient adsorption and preconcentration of chemical warfare agents. Carbon 122:556–563CrossRef
8.
Zurück zum Zitat Liu C, Liu H, Xu A, Tang K, Huang Y, Lu C (2017) In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. J Alloys Compd 714:522–529CrossRef Liu C, Liu H, Xu A, Tang K, Huang Y, Lu C (2017) In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. J Alloys Compd 714:522–529CrossRef
9.
Zurück zum Zitat Qin SY, Liu XJ, Zhuo RX, Zhang XZ (2012) Microstructure-controllable graphene oxide hydrogel film based on a pH-responsive graphene oxide hydrogel. Macromol Chem Phys 213:2044–2051CrossRef Qin SY, Liu XJ, Zhuo RX, Zhang XZ (2012) Microstructure-controllable graphene oxide hydrogel film based on a pH-responsive graphene oxide hydrogel. Macromol Chem Phys 213:2044–2051CrossRef
10.
Zurück zum Zitat Sui Z, Meng Q, Zhang X, Ma R, Cao B (2012) Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771CrossRef Sui Z, Meng Q, Zhang X, Ma R, Cao B (2012) Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771CrossRef
11.
Zurück zum Zitat Sui ZY, Cui Y, Zhu JH, Han BH (2013) Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. Appl Mater Interfaces 5:9172–9179CrossRef Sui ZY, Cui Y, Zhu JH, Han BH (2013) Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. Appl Mater Interfaces 5:9172–9179CrossRef
12.
Zurück zum Zitat Tiwari JN, Mahesh K, Le NH et al (2013) Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 56:173–182CrossRef Tiwari JN, Mahesh K, Le NH et al (2013) Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 56:173–182CrossRef
13.
Zurück zum Zitat Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330CrossRef Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330CrossRef
14.
Zurück zum Zitat Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470CrossRef Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470CrossRef
15.
Zurück zum Zitat Zhao J, Ren W, Cheng HM (2012) Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem 22:20197–20202CrossRef Zhao J, Ren W, Cheng HM (2012) Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem 22:20197–20202CrossRef
16.
Zurück zum Zitat Zhao R, Li K, Liu R, Sarfraz M, Shakir I, Xu Y (2017) Reversible 3D self-assembly of graphene oxide and stimuli-responsive polymers for high-performance graphene-based supercapacitors. J Mater Chem A 5:19098–19106CrossRef Zhao R, Li K, Liu R, Sarfraz M, Shakir I, Xu Y (2017) Reversible 3D self-assembly of graphene oxide and stimuli-responsive polymers for high-performance graphene-based supercapacitors. J Mater Chem A 5:19098–19106CrossRef
17.
Zurück zum Zitat Luo J, Jang HD, Sun T et al (2011) Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5:8943–8949CrossRef Luo J, Jang HD, Sun T et al (2011) Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5:8943–8949CrossRef
18.
Zurück zum Zitat Ma X, Zachariah MR, Zangmeister CD (2012) Crumpled nanopaper from graphene oxide. Nano Lett 12:486–489CrossRef Ma X, Zachariah MR, Zangmeister CD (2012) Crumpled nanopaper from graphene oxide. Nano Lett 12:486–489CrossRef
19.
Zurück zum Zitat Kim TY, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7:6899–6905CrossRef Kim TY, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7:6899–6905CrossRef
20.
Zurück zum Zitat Tang Z, Li X, Sun T, Shen S, Hui X, Yang J (2018) Porous crumpled graphene with hierarchical pore structure and high surface utilization efficiency for supercapacitor. Microporous Mesoporous Mater 272:40–43CrossRef Tang Z, Li X, Sun T, Shen S, Hui X, Yang J (2018) Porous crumpled graphene with hierarchical pore structure and high surface utilization efficiency for supercapacitor. Microporous Mesoporous Mater 272:40–43CrossRef
21.
Zurück zum Zitat Fan X, Peng W, Li Y et al (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493CrossRef Fan X, Peng W, Li Y et al (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493CrossRef
22.
Zurück zum Zitat Liu C, He C, Xie T, Yang J (2015) Reduction of graphite oxide using ammonia solution and detection Cr(VI) with graphene-modified electrode. Fuller Sci Technol 23:125–130 Liu C, He C, Xie T, Yang J (2015) Reduction of graphite oxide using ammonia solution and detection Cr(VI) with graphene-modified electrode. Fuller Sci Technol 23:125–130
23.
Zurück zum Zitat Hummers WS Jr., Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS Jr., Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
24.
Zurück zum Zitat Tseng RL (2006) Mesopore control of high surface area NaOH-activated carbon. J Colloid Interface Sci 303:494–502CrossRef Tseng RL (2006) Mesopore control of high surface area NaOH-activated carbon. J Colloid Interface Sci 303:494–502CrossRef
25.
Zurück zum Zitat Han Z, Tang Z, Shen S et al (2014) Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+. Sci Rep 4:5025CrossRef Han Z, Tang Z, Shen S et al (2014) Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+. Sci Rep 4:5025CrossRef
26.
Zurück zum Zitat Mermoux M, Chabre Y, Rousseau A (1991) FTIR and 13C NMR study of graphite oxide. Carbon 29:469–474CrossRef Mermoux M, Chabre Y, Rousseau A (1991) FTIR and 13C NMR study of graphite oxide. Carbon 29:469–474CrossRef
27.
Zurück zum Zitat Park S, An J, Jung I et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef Park S, An J, Jung I et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef
28.
Zurück zum Zitat Verma A, Parashar A (2018) Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput Mater Sci 143:15–26CrossRef Verma A, Parashar A (2018) Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput Mater Sci 143:15–26CrossRef
29.
Zurück zum Zitat Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055CrossRef Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055CrossRef
30.
Zurück zum Zitat Lin Y, Jin J, Song M (2011) Preparation and characterisation of covalent polymer functionalized graphene oxide. J Mater Chem 21:3455–3461CrossRef Lin Y, Jin J, Song M (2011) Preparation and characterisation of covalent polymer functionalized graphene oxide. J Mater Chem 21:3455–3461CrossRef
31.
Zurück zum Zitat Cheng ZL, Li YX, Liu Z (2017) Novel adsorption materials based on graphene oxide/beta zeolite composite materials and their adsorption performance for rhodamine B. J Alloys Compd 708:255–263CrossRef Cheng ZL, Li YX, Liu Z (2017) Novel adsorption materials based on graphene oxide/beta zeolite composite materials and their adsorption performance for rhodamine B. J Alloys Compd 708:255–263CrossRef
32.
Zurück zum Zitat Geng Z, Lin Y, Yu X et al (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22:3527–3535CrossRef Geng Z, Lin Y, Yu X et al (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22:3527–3535CrossRef
33.
Zurück zum Zitat Liu K, Li H, Wang Y, Gou X, Duan Y (2015) Adsorption and removal of rhodamine B from aqueous solution by tannic acid functionalized graphene. Colloids Surf A Physicochem Eng Asp 477:35–41CrossRef Liu K, Li H, Wang Y, Gou X, Duan Y (2015) Adsorption and removal of rhodamine B from aqueous solution by tannic acid functionalized graphene. Colloids Surf A Physicochem Eng Asp 477:35–41CrossRef
34.
Zurück zum Zitat Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562CrossRef Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562CrossRef
Metadaten
Titel
Porous crumpled graphene with improved specific surface area based on hydrophilic pre-reduction and its adsorption performance
verfasst von
Jinlin Zhao
Zhihong Tang
Yishu Qiu
Xiaolin Gao
Jia Wan
Wenrong Bi
Shuling Shen
Junhe Yang
Publikationsdatum
26.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03288-5

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Science 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.