Skip to main content
Erschienen in: Journal of Materials Science 9/2018

12.01.2018 | Computation

Machine learning properties of binary wurtzite superlattices

verfasst von: G. Pilania, X.-Y. Liu

Erschienen in: Journal of Materials Science | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present contribution, we show that fast and accurate predictions of a wide range of properties of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. While the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Agrawal A, Choudhary A (2016) Materials informatics and big data: realization of the ‘fourth paradigm’ of science in materials science. APL Mater 4:53208 Agrawal A, Choudhary A (2016) Materials informatics and big data: realization of the ‘fourth paradigm’ of science in materials science. APL Mater 4:53208
3.
Zurück zum Zitat Curtarolo S et al (2013) The high-throughput highway to computational materials design. Nat Mater 12:191 Curtarolo S et al (2013) The high-throughput highway to computational materials design. Nat Mater 12:191
4.
Zurück zum Zitat Jain A, Hautier G, Ong SP, Persson K (2016) New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships. J Mater Res 31:977–994 Jain A, Hautier G, Ong SP, Persson K (2016) New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships. J Mater Res 31:977–994
5.
Zurück zum Zitat Rajan K (2005) Materials informatics. Mater Today 8:38 Rajan K (2005) Materials informatics. Mater Today 8:38
6.
Zurück zum Zitat LeSar R (2009) Materials informatics: an emerging technology for materials development. Stat Anal Data Min 1:372 LeSar R (2009) Materials informatics: an emerging technology for materials development. Stat Anal Data Min 1:372
7.
Zurück zum Zitat Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning and materials informatics: recent applications and prospects. ArXiv Prepr arXiv:170707294 Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning and materials informatics: recent applications and prospects. ArXiv Prepr arXiv:​170707294
8.
Zurück zum Zitat Montavon G et al (2013) Machine learning of molecular electronic properties in chemical compound space. New J Phys 15:95003 Montavon G et al (2013) Machine learning of molecular electronic properties in chemical compound space. New J Phys 15:95003
9.
Zurück zum Zitat Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R (2013) Accelerating materials property predictions using machine learning. Sci Rep 3:2810 Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R (2013) Accelerating materials property predictions using machine learning. Sci Rep 3:2810
10.
Zurück zum Zitat Meredig B et al (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89:094104 Meredig B et al (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89:094104
11.
Zurück zum Zitat Deml AM, O’Hayre R, Wolverton C, Stevanovic V (2016) Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression. Phys Rev B 93:085142 Deml AM, O’Hayre R, Wolverton C, Stevanovic V (2016) Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression. Phys Rev B 93:085142
12.
Zurück zum Zitat Legrain F, Carrete J, van Roekeghem A, Curtarolo S, Mingo N (2017) How the chemical composition alone can predict vibrational free energies and entropies of solids. arXiv preprint arXiv:1703.02309 Legrain F, Carrete J, van Roekeghem A, Curtarolo S, Mingo N (2017) How the chemical composition alone can predict vibrational free energies and entropies of solids. arXiv preprint arXiv:​1703.​02309
13.
Zurück zum Zitat Medasani B et al (2016) Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning. NPJ Comput Mater 2:1 Medasani B et al (2016) Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning. NPJ Comput Mater 2:1
14.
Zurück zum Zitat Seko A, Maekawa T, Tsuda K, Tanaka I (2014) Machine learning with systematic density functional theory calculations: Application to melting temperatures of single- and binary component solids. Phys Rev B 89:054303 Seko A, Maekawa T, Tsuda K, Tanaka I (2014) Machine learning with systematic density functional theory calculations: Application to melting temperatures of single- and binary component solids. Phys Rev B 89:054303
15.
Zurück zum Zitat Pilania G, Gubernatis JE, Lookman T (2015) Structure classification and melting temperature prediction in octet AB solids via machine learning. Phys Rev B 91:214302 Pilania G, Gubernatis JE, Lookman T (2015) Structure classification and melting temperature prediction in octet AB solids via machine learning. Phys Rev B 91:214302
16.
Zurück zum Zitat Aryal S, Sakidja R, Barsoum MW, Ching W-Y (2014) A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys Status Solidi 251:1480–1497 Aryal S, Sakidja R, Barsoum MW, Ching W-Y (2014) A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys Status Solidi 251:1480–1497
17.
Zurück zum Zitat De Jong M et al (2016) A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep 6:34256 De Jong M et al (2016) A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep 6:34256
18.
Zurück zum Zitat Pilania G et al (2016) Machine learning bandgaps of double perovskites. Sci Rep 6:19375 Pilania G et al (2016) Machine learning bandgaps of double perovskites. Sci Rep 6:19375
19.
Zurück zum Zitat Lee J, Seko A, Shitara K, Nakayama K, Tanaka I (2016) Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys Rev B 93:115104 Lee J, Seko A, Shitara K, Nakayama K, Tanaka I (2016) Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys Rev B 93:115104
20.
Zurück zum Zitat Pilania G, Gubernatis JE, Lookman T (2017) Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput Mater Sci 129:156–163 Pilania G, Gubernatis JE, Lookman T (2017) Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput Mater Sci 129:156–163
21.
Zurück zum Zitat Weston L, Stampfl C (2017) Machine learning the band gap properties of kesterite \(\text{I}_2\)–II–IV–\(\text{V}_4\) quaternary compounds for photovoltaics applications. ArXiv Prepr arXiv:170808530 Weston L, Stampfl C (2017) Machine learning the band gap properties of kesterite \(\text{I}_2\)–II–IV–\(\text{V}_4\) quaternary compounds for photovoltaics applications. ArXiv Prepr arXiv:​170808530
22.
Zurück zum Zitat Seko A et al (2015) Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett 115:205901 Seko A et al (2015) Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett 115:205901
23.
Zurück zum Zitat Kim C, Pilania G, Ramprasad R (2016) From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem Mater 28:1304–1311 Kim C, Pilania G, Ramprasad R (2016) From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem Mater 28:1304–1311
24.
Zurück zum Zitat Kim C, Pilania G, Ramprasad R (2016) Machine learning assisted predictions of intrinsic dielectric breakdown strength of \(\text{ABX}_3\) perovskites. J Phys Chem C 120:14575–14580 Kim C, Pilania G, Ramprasad R (2016) Machine learning assisted predictions of intrinsic dielectric breakdown strength of \(\text{ABX}_3\) perovskites. J Phys Chem C 120:14575–14580
25.
Zurück zum Zitat Hong WT, Welsch RE, Shao-Horn Y (2016) Descriptors of Oxygen-Evolution activity for oxides: A statistical evaluation. J Phys Chem C 120:78–86 Hong WT, Welsch RE, Shao-Horn Y (2016) Descriptors of Oxygen-Evolution activity for oxides: A statistical evaluation. J Phys Chem C 120:78–86
26.
Zurück zum Zitat Li Z, Ma X, Xin H (2017) Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today 280:232–238 Li Z, Ma X, Xin H (2017) Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today 280:232–238
27.
Zurück zum Zitat Pilania G et al (2017) Using machine learning to identify factors that govern amorphization of irradiated pyrochlores. Chem Mater 29:2574–2583 Pilania G et al (2017) Using machine learning to identify factors that govern amorphization of irradiated pyrochlores. Chem Mater 29:2574–2583
28.
Zurück zum Zitat Xue D et al (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7:11241 Xue D et al (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7:11241
29.
Zurück zum Zitat Xue D et al (2016) Accelerated search for \(\text{ BaTiO }_3\)-based piezoelectrics with vertical morphotropic phase boundary using bayesian learning. Proc Natl Acad Sci 113:13301–13306 Xue D et al (2016) Accelerated search for \(\text{ BaTiO }_3\)-based piezoelectrics with vertical morphotropic phase boundary using bayesian learning. Proc Natl Acad Sci 113:13301–13306
30.
Zurück zum Zitat Ashton M, Hennig RG, Broderick SR, Rajan K, Sinnott SB (2016) Computational discovery of stable \(\text{ M }_2\text{ AX }\) phases. Phys Rev B 94:20 Ashton M, Hennig RG, Broderick SR, Rajan K, Sinnott SB (2016) Computational discovery of stable \(\text{ M }_2\text{ AX }\) phases. Phys Rev B 94:20
31.
Zurück zum Zitat Pilania G, Balachandran PV, Kim C, Lookman T (2016) Finding new perovskite halides via machine learning. Front Mater 3:19 Pilania G, Balachandran PV, Kim C, Lookman T (2016) Finding new perovskite halides via machine learning. Front Mater 3:19
32.
Zurück zum Zitat Faber FA, Lindmaa A, von Lilienfeld OA, Armiento R (2016) Machine learning energies of 2 million elpasolite (\(\text{ABC}_2\text{D}_6\)) crystals. Phys Rev Lett 117:135502 Faber FA, Lindmaa A, von Lilienfeld OA, Armiento R (2016) Machine learning energies of 2 million elpasolite (\(\text{ABC}_2\text{D}_6\)) crystals. Phys Rev Lett 117:135502
33.
Zurück zum Zitat Fernandez M, Boyd PG, Da TD, Aghaji MZ, Woo TK (2014) Rapid and accurate machine learning recognition of high performing metal organic frameworks for \(\text{CO}_2\) capture. J Phys Chem Lett 5:3056–3060 Fernandez M, Boyd PG, Da TD, Aghaji MZ, Woo TK (2014) Rapid and accurate machine learning recognition of high performing metal organic frameworks for \(\text{CO}_2\) capture. J Phys Chem Lett 5:3056–3060
34.
Zurück zum Zitat Emery AA, Saal JE, Kirklin S, Hegde VI, Wolverton C (2016) High-Throughput computational screening of perovskites for thermochemical water splitting applications. Chem Mater 28:5621–5634 Emery AA, Saal JE, Kirklin S, Hegde VI, Wolverton C (2016) High-Throughput computational screening of perovskites for thermochemical water splitting applications. Chem Mater 28:5621–5634
36.
Zurück zum Zitat Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114:105503 Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114:105503
37.
Zurück zum Zitat Mueller T, Kusne AG, Ramprasad R (2016) Machine learning in materials science. In: Parril AL, Lipkowitz KB (eds) Reviews in computational chemistry. Wiley, Hoboken, pp 186–273 Mueller T, Kusne AG, Ramprasad R (2016) Machine learning in materials science. In: Parril AL, Lipkowitz KB (eds) Reviews in computational chemistry. Wiley, Hoboken, pp 186–273
38.
Zurück zum Zitat Bartok AP, Kondor R, Csanyi G (2013) On representing chemical environments. Phys Rev B 87:184115 Bartok AP, Kondor R, Csanyi G (2013) On representing chemical environments. Phys Rev B 87:184115
39.
Zurück zum Zitat Behler J (2014) Representing potential energy surfaces by high-dimensional neural network potentials. J Phys Condens Matter 26:183001 Behler J (2014) Representing potential energy surfaces by high-dimensional neural network potentials. J Phys Condens Matter 26:183001
40.
Zurück zum Zitat Li Z, Kermode JR, De Vita A (2015) Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett 114:096405 Li Z, Kermode JR, De Vita A (2015) Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett 114:096405
41.
Zurück zum Zitat Botu V, Ramprasad R (2015) Learning scheme to predict atomic forces and accelerate materials simulations. Phys Rev B 92:094306 Botu V, Ramprasad R (2015) Learning scheme to predict atomic forces and accelerate materials simulations. Phys Rev B 92:094306
42.
Zurück zum Zitat Botu V, Ramprasad R (2015) Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int J Quantum Chem 115:1074–1083 Botu V, Ramprasad R (2015) Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int J Quantum Chem 115:1074–1083
43.
Zurück zum Zitat Yu ET, Chow DH, McGill TC (1988) Commutativity of the GaAs/AlAs (100) band offset. Phys Rev B 38:12764 Yu ET, Chow DH, McGill TC (1988) Commutativity of the GaAs/AlAs (100) band offset. Phys Rev B 38:12764
44.
Zurück zum Zitat Larsson MW, Wagner JB, Wallin M, Hakansson P, Fröberg LE, Samuelson L, Wallenberg LR (2006) Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology 18:015504 Larsson MW, Wagner JB, Wallin M, Hakansson P, Fröberg LE, Samuelson L, Wallenberg LR (2006) Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology 18:015504
45.
Zurück zum Zitat Chang YM, Liou SC, Chen CH, Lee HM, Gwo S (2010) The electrostatic coupling of longitudinal optical phonon and plasmon in wurtzite InN thin films. Appl Phys Lett 96:041908 Chang YM, Liou SC, Chen CH, Lee HM, Gwo S (2010) The electrostatic coupling of longitudinal optical phonon and plasmon in wurtzite InN thin films. Appl Phys Lett 96:041908
46.
Zurück zum Zitat Koguchi M, Kakibayashi H, Yazawa M, Hiruma K, Katsuyama T (1992) Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn J Appl Phys 31:2061 Koguchi M, Kakibayashi H, Yazawa M, Hiruma K, Katsuyama T (1992) Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn J Appl Phys 31:2061
47.
Zurück zum Zitat Ma C, Moore D, Li J, Wang ZL (2003) Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS. Adv Mater 15:228–231 Ma C, Moore D, Li J, Wang ZL (2003) Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS. Adv Mater 15:228–231
48.
Zurück zum Zitat Kohn W (1999) Nobel Lecture: Electronic structure of matter–wave functions and density functionals. Rev Mod Phys 71:1253 Kohn W (1999) Nobel Lecture: Electronic structure of matter–wave functions and density functionals. Rev Mod Phys 71:1253
49.
Zurück zum Zitat Martin R (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, New York Martin R (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, New York
50.
Zurück zum Zitat Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186 Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186
52.
Zurück zum Zitat Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244 Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244
53.
Zurück zum Zitat Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979 Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979
54.
Zurück zum Zitat Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188 Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188
55.
Zurück zum Zitat Heyd J, Scuseria GE, Ernzerhof E (2006) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906 Heyd J, Scuseria GE, Ernzerhof E (2006) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906
56.
Zurück zum Zitat Born M, Huang K (1956) Dynamical theory of crystal lattices. Clarendon, Oxford Born M, Huang K (1956) Dynamical theory of crystal lattices. Clarendon, Oxford
57.
Zurück zum Zitat Huan TD, Mannodi-Kanakkithodi A, Ramprasad R (2015) Accelerated materials property predictions and design using motif-based fingerprints. Phys Rev B 92:014106 Huan TD, Mannodi-Kanakkithodi A, Ramprasad R (2015) Accelerated materials property predictions and design using motif-based fingerprints. Phys Rev B 92:014106
58.
Zurück zum Zitat Botu V, Batra R, Chapman J, Ramprasad R (2016) Machine learning force fields: construction, validation, and outlook. J Phys Chem C 121:511–522 Botu V, Batra R, Chapman J, Ramprasad R (2016) Machine learning force fields: construction, validation, and outlook. J Phys Chem C 121:511–522
59.
Zurück zum Zitat Jasrasaria D, Pyzer-Knapp EO, Rappoport D, Aspuru-Guzik A (2016) Space-filling curves as a novel crystal structure representation for machine learning models. arXiv preprint arXiv:1608.05747 Jasrasaria D, Pyzer-Knapp EO, Rappoport D, Aspuru-Guzik A (2016) Space-filling curves as a novel crystal structure representation for machine learning models. arXiv preprint arXiv:​1608.​05747
60.
Zurück zum Zitat Huang B, von Lilienfeld OA (2016) Communication: understanding molecular representations in machine learning: the role of uniqueness and target similarity. J Chem Phys 145:161102 Huang B, von Lilienfeld OA (2016) Communication: understanding molecular representations in machine learning: the role of uniqueness and target similarity. J Chem Phys 145:161102
62.
Zurück zum Zitat Cubuk ED, Malone BD, Onat B, Waterland A, Kaxiras E (2017) Representations in neural network based empirical potentials. J Chem Phys 147:024104 Cubuk ED, Malone BD, Onat B, Waterland A, Kaxiras E (2017) Representations in neural network based empirical potentials. J Chem Phys 147:024104
63.
Zurück zum Zitat Artrith N, Urban A, Ceder G (2017) Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys Rev B 96:014112 Artrith N, Urban A, Ceder G (2017) Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys Rev B 96:014112
64.
65.
Zurück zum Zitat Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T, Ramprasad R (2016) Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep 6:20952 Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T, Ramprasad R (2016) Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep 6:20952
66.
Zurück zum Zitat Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York
67.
Zurück zum Zitat Vu K et al (2015) Understanding kernel ridge regression: common behaviors from simple functions to density functionals. Int J Quantum Chem 115:1115–1128 Vu K et al (2015) Understanding kernel ridge regression: common behaviors from simple functions to density functionals. Int J Quantum Chem 115:1115–1128
68.
Zurück zum Zitat Rupp M (2015) Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem 115:1058–1073 Rupp M (2015) Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem 115:1058–1073
69.
Zurück zum Zitat Muller K-R, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181 Muller K-R, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181
70.
Zurück zum Zitat Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken
71.
Zurück zum Zitat Weber MJ (2002) Handbook of optical materials. CRC Press, Boca Raton Weber MJ (2002) Handbook of optical materials. CRC Press, Boca Raton
72.
Zurück zum Zitat Madelung O (2012) Semiconductors: data handbook. Springer, New York Madelung O (2012) Semiconductors: data handbook. Springer, New York
73.
Zurück zum Zitat Sham LJ, Schlüter M (1983) Density-functional theory of the energy gap. Phys Rev Lett 51:1888 Sham LJ, Schlüter M (1983) Density-functional theory of the energy gap. Phys Rev Lett 51:1888
74.
Zurück zum Zitat Cohen AJ, Mori-Sánchez P, Yang W (2008) Fractional charge perspective on the bandgap in density-functional theory. Phys Rev B 77:115123 Cohen AJ, Mori-Sánchez P, Yang W (2008) Fractional charge perspective on the bandgap in density-functional theory. Phys Rev B 77:115123
75.
Zurück zum Zitat Mori-Sánchez P, Cohen AJ, Yang W (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100:146401 Mori-Sánchez P, Cohen AJ, Yang W (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100:146401
76.
Zurück zum Zitat Jain A, Shin Y, Persson KA (2016) Computational predictions of energy materials using density functional theory. Nat Rev Mater 1:15004 Jain A, Shin Y, Persson KA (2016) Computational predictions of energy materials using density functional theory. Nat Rev Mater 1:15004
77.
Zurück zum Zitat Olivares-Amaya R et al (2011) Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci 4:4849 Olivares-Amaya R et al (2011) Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci 4:4849
78.
Zurück zum Zitat Nilsson A, Pettersson LG, Nørskov J (2011) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam Nilsson A, Pettersson LG, Nørskov J (2011) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam
79.
Zurück zum Zitat Dey P, Bible J, Datta S, Broderick S, Jasinski J, Sunkara M, Menon M, Rajan K (2014) Informatics-aided bandgap engineering for solar materials. Comput Mater Sci 83:185 Dey P, Bible J, Datta S, Broderick S, Jasinski J, Sunkara M, Menon M, Rajan K (2014) Informatics-aided bandgap engineering for solar materials. Comput Mater Sci 83:185
80.
Zurück zum Zitat Castelli IE, Garca-Lastra JM, Hüser F, Thygesen KS, Jacobsen KW (2013) Stability and bandgaps of layered perovskites for one-and two-photon water splitting. New J Phys 15:105026 Castelli IE, Garca-Lastra JM, Hüser F, Thygesen KS, Jacobsen KW (2013) Stability and bandgaps of layered perovskites for one-and two-photon water splitting. New J Phys 15:105026
81.
Zurück zum Zitat Rasmussen F, Thygesen KS (2015) Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Phys Chem C 119:13169–13183 Rasmussen F, Thygesen KS (2015) Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Phys Chem C 119:13169–13183
Metadaten
Titel
Machine learning properties of binary wurtzite superlattices
verfasst von
G. Pilania
X.-Y. Liu
Publikationsdatum
12.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-1987-z

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Science 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.