Skip to main content

Advertisement

Log in

Zein–Laponite nanocomposites with improved mechanical, thermal and barrier properties

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Correction to this article was published on 19 June 2018

This article has been updated

Abstract

Zein, a prolamin of corn, is a bio-renewable resource that can potentially offer alternatives for petroleum-based polymers in many applications. Nanocomposite formation with the addition of silicate nanoparticles (Laponite) to zein films, cast from 70% ethanol solutions, significantly improved the mechanical, thermal and barrier properties. Based on FTIR findings, a mechanism for zein–Laponite nanocomposite formation is proposed, which suggests Laponite nanoparticles bind to zein molecules through Si–N bond formation. Structural characteristics investigated using AFM and TEM confirmed exfoliation of the nanoparticle. The changes in the surface energy of the films were evaluated using water contact angle measurements and showed an increase in surface hydrophobicity. The Young’s modulus and tensile strength increased with nanoparticle concentration. The glass transition temperature increased, and water vapor permeability decreased with only a small amount of Laponite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Change history

  • 19 June 2018

    Laponite® is a registered trademark of BYK Additives & Instruments. Throughout the article, the registered trademark symbol should have been used whenever Laponite® was mentioned.

References

  1. Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6:22–29. https://doi.org/10.1016/S1369-7021(03)00427-9

    Article  Google Scholar 

  2. MacArthur E (2017) Beyond plastic waste. Science 358:843. https://doi.org/10.1126/science.aao6749

    Article  Google Scholar 

  3. Law KL, Morét-Ferguson S, Maximenko NA et al (2010) Plastic accumulation in the North Atlantic subtropical Gyre. Science 329:1185–1188. https://doi.org/10.1126/science.1192321

    Article  Google Scholar 

  4. Chen G-G, Qi X-M, Guan Y et al (2016) High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain Chem Eng 4:1985–1993. https://doi.org/10.1021/acssuschemeng.5b01252

    Article  Google Scholar 

  5. Rouf TB, Kokini JL (2018) Natural biopolymer-based nanocomposite films for packaging applications. In: Bionanocomposites for packaging applications. Springer, Cham, pp 149–177

  6. Lai H-M, Padua GW (1997) Properties and microstructure of plasticized zein films. Cereal Chem J 74:771–775. https://doi.org/10.1094/CCHEM.1997.74.6.771

    Article  Google Scholar 

  7. Luecha J, Sozer N, Kokini JL (2010) Synthesis and properties of corn zein/montmorillonite nanocomposite films. J Mater Sci 45:3529–3537. https://doi.org/10.1007/s10853-010-4395-6

    Article  Google Scholar 

  8. Luecha J, Hsiao A, Brodsky S et al (2011) Green microfluidic devices made of corn proteins. Lab Chip 11:3419–3425

    Article  Google Scholar 

  9. Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crops Prod 13:171–192

    Article  Google Scholar 

  10. Lawton JW (2002) Zein: a history of processing and use. Cereal Chem J 79:1–18. https://doi.org/10.1094/CCHEM.2002.79.1.1

    Article  Google Scholar 

  11. Anderson TJ, Ilankovan P, Lamsal BP (2012) Two fraction extraction of α-zein from DDGS and its characterization. Ind Crops Prod 37:466–472. https://doi.org/10.1016/j.indcrop.2011.07.022

    Article  Google Scholar 

  12. Shi W, Dumont M-J (2013) Review: bio-based films from zein, keratin, pea, and rapeseed protein feedstocks. J Mater Sci 49:1915–1930. https://doi.org/10.1007/s10853-013-7933-1

    Article  Google Scholar 

  13. Dashdorj U, Reyes MK, Unnithan AR et al (2015) Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications. Int J Biol Macromol 80:1–7. https://doi.org/10.1016/j.ijbiomac.2015.06.026

    Article  Google Scholar 

  14. Li J, Li Y, Lee T-C, Huang Q (2013) Structure and physical properties of zein/pluronic F127 composite films. J Agric Food Chem 61:1309–1318. https://doi.org/10.1021/jf3043055

    Article  Google Scholar 

  15. Manisara P, Parichat M (2012) Cellulose microfibril from banana peels as a nanoreinforcing fillers for zein films. Open J Polym Chem. https://doi.org/10.4236/ojpchem.2012.22007

    Google Scholar 

  16. Oliviero M, Verdolotti L, Di Maio E et al (2011) Effect of supramolecular structures on thermoplastic zein-lignin bionanocomposites. J Agric Food Chem 59:10062–10070. https://doi.org/10.1021/jf201728p

    Article  Google Scholar 

  17. Ozcalik O, Tihminlioglu F (2013) Barrier properties of corn zein nanocomposite coated polypropylene films for food packaging applications. J Food Eng 114:505–513. https://doi.org/10.1016/j.jfoodeng.2012.09.005

    Article  Google Scholar 

  18. Nedi I, Di Maio E, Iannace S (2012) The role of protein–plasticizer–clay interactions on processing and properties of thermoplastic zein bionanocomposites. J Appl Polym Sci 125:E314–E323. https://doi.org/10.1002/app.36860

    Article  Google Scholar 

  19. Gaharwar AK, Rivera CP, Wu C-J, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148. https://doi.org/10.1016/j.actbio.2011.07.023

    Article  Google Scholar 

  20. Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51:271–310. https://doi.org/10.1007/s10853-015-9382-5

    Article  Google Scholar 

  21. Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42:8163–8171. https://doi.org/10.1007/s10853-007-1699-2

    Article  Google Scholar 

  22. Liu F, Jiang G-C, Wang K, Wang J (2017) Laponite nanoparticle as a multi-functional additive in water-based drilling fluids. J Mater Sci 52:12266–12278. https://doi.org/10.1007/s10853-017-1375-0

    Article  Google Scholar 

  23. Chouhan DK, Rath SK, Kumar A et al (2015) Structure-reinforcement correlation and chain dynamics in graphene oxide and Laponite-filled epoxy nanocomposites. J Mater Sci 50:7458–7472. https://doi.org/10.1007/s10853-015-9305-5

    Article  Google Scholar 

  24. Li X, Zhou M, Xu H et al (2014) Synthesis and electrochemical performances of a novel two-dimensional nanocomposite: polyaniline-coated laponite nanosheets. J Mater Sci 49:6830–6837. https://doi.org/10.1007/s10853-014-8385-y

    Article  Google Scholar 

  25. Wu W, Dong Z, He J et al (2016) Transparent cellulose/Laponite nanocomposite films. J Mater Sci 51:4125–4133. https://doi.org/10.1007/s10853-016-9735-8

    Article  Google Scholar 

  26. Shan D, Li Q-B, Ding S-N et al (2010) Reagentless biosensor for hydrogen peroxide based on self-assembled films of horseradish peroxidase/laponite/chitosan and the primary investigation on the inhibitory effect by sulfide. Biosens Bioelectron 26:536–541. https://doi.org/10.1016/j.bios.2010.07.051

    Article  Google Scholar 

  27. Zanini VP, López de Mishima B, Solís V (2011) An amperometric biosensor based on lactate oxidase immobilized in laponite–chitosan hydrogel on a glassy carbon electrode. Application to the analysis of l-lactate in food samples. Sens Actuators B Chem 155:75–80. https://doi.org/10.1016/j.snb.2010.11.026

    Article  Google Scholar 

  28. Barbieri M, Cellini F, Cacciotti I et al (2017) In situ temperature sensing with fluorescent chitosan-coated PNIPAAm/alginate beads. J Mater Sci 52:12506–12512. https://doi.org/10.1007/s10853-017-1345-6

    Article  Google Scholar 

  29. Schmidt G, Nakatani AI, Butler PD, Han CC (2002) Small-angle neutron scattering from viscoelastic polymer-clay solutions. Macromolecules 35:4725–4732. https://doi.org/10.1021/ma0115141

    Article  Google Scholar 

  30. Schmidt G, Nakatani AI, Butler PD et al (2000) Shear orientation of viscoelastic polymer-clay solutions probed by flow birefringence and SANS. Macromolecules 33:7219–7222. https://doi.org/10.1021/ma9918811

    Article  Google Scholar 

  31. Gezer PG, Liu GL, Kokini JL (2016) Development of a biodegradable sensor platform from gold coated zein nanophotonic films to detect peanut allergen, Ara h1, using surface enhanced raman spectroscopy. Talanta 150:224–232. https://doi.org/10.1016/j.talanta.2015.12.034

    Article  Google Scholar 

  32. Gezer PG, Hsiao A, Kokini JL, Liu GL (2016) Simultaneous transfer of noble metals and three-dimensional micro- and nanopatterns onto zein for fabrication of nanophotonic platforms. J Mater Sci 51:3806–3816. https://doi.org/10.1007/s10853-015-9699-0

    Article  Google Scholar 

  33. Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934. https://doi.org/10.1039/B617536H

    Article  Google Scholar 

  34. Panchapakesan C, Sozer N, Dogan H et al (2012) Effect of different fractions of zein on the mechanical and phase properties of zein films at nano-scale. J Cereal Sci 55:174–182. https://doi.org/10.1016/j.jcs.2011.11.004

    Article  Google Scholar 

  35. Mejia CD, Mauer LJ, Hamaker BR (2007) Similarities and differences in secondary structure of viscoelastic polymers of maize α-zein and wheat gluten proteins. J Cereal Sci 45:353–359. https://doi.org/10.1016/j.jcs.2006.09.009

    Article  Google Scholar 

  36. Bal Ram Singh (1999) Basic aspects of the technique and applications of infrared spectroscopy of peptides and proteins. In: Infrared analysis of peptides and proteins. American Chemical Society, pp 2–37

  37. ASTM E (96) Standard test methods for water vapor transmission of materials. Foundation drainage rate: Hydraulic Gradient 1:18

  38. Gezer PG, Brodsky S, Hsiao A et al (2015) Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen plasma treated PDMS and oleic acid content. Colloids Surf B 135:433–440. https://doi.org/10.1016/j.colsurfb.2015.07.006

    Article  Google Scholar 

  39. Testing AS for Materials (2010) Standard test method for tensile properties of thin plastic sheeting. ASTM International

  40. Guimarães TR, de Camargo Chaparro T, D’Agosto F et al (2014) Synthesis of multi-hollow clay-armored latexes by surfactant-free emulsion polymerization of styrene mediated by poly(ethylene oxide)-based macroRAFT/Laponite complexes. Polym Chem 5:6611–6622. https://doi.org/10.1039/C4PY00362D

    Article  Google Scholar 

  41. Lewandowska K, Sionkowska A, Kaczmarek B, Furtos G (2014) Mechanical and morphological studies of chitosan/clay composites. Mol Cryst Liq Cryst 590:193–198. https://doi.org/10.1080/15421406.2013.874718

    Article  Google Scholar 

  42. Fatnassi M, Solterbeck C-H, Es-Souni M (2014) Clay nanomaterial thin film electrodes for electrochemical energy storage applications. RSC Adv 4:46976–46979. https://doi.org/10.1039/C4RA04330H

    Article  Google Scholar 

  43. Hodges CS, Ding Y, Biggs S (2010) The influence of nanoparticle shape on the drying of colloidal suspensions. J Colloid Interface Sci 352:99–106. https://doi.org/10.1016/j.jcis.2010.08.044

    Article  Google Scholar 

  44. Shan D, Wang Y-N, Xue H-G et al (2009) Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: direct electron transfer and multielectrocatalysis. Biosens Bioelectron 24:3556–3561. https://doi.org/10.1016/j.bios.2009.05.009

    Article  Google Scholar 

  45. Shi K, Kokini JL, Huang Q (2009) Engineering zein films with controlled surface morphology and hydrophilicity. J Agric Food Chem 57:2186–2192. https://doi.org/10.1021/jf803559v

    Article  Google Scholar 

  46. Lee H-T, Lin L-H (2006) Waterborne polyurethane/clay nanocomposites: novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties. Macromolecules 39:6133–6141. https://doi.org/10.1021/ma060621y

    Article  Google Scholar 

  47. Farmahini-Farahani M, Khan A, Lu P et al (2017) Surface morphological analysis and water vapor barrier properties of modified Cloisite 30B/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composites. Appl Clay Sci 135:27–34. https://doi.org/10.1016/j.clay.2016.08.033

    Article  Google Scholar 

  48. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Elsevier, New York

    Google Scholar 

  49. Yamazaki H, Ishikawa Y, Fujii M et al (2014) The influence of fluorinated silicon nitride gate insulator on positive bias stability toward highly reliable amorphous InGaZnO thin-film transistors. ECS J Solid State Sci Technol 3:Q20–Q23. https://doi.org/10.1149/2.014402jss

    Article  Google Scholar 

  50. Reza Mahdavinia G, Ettehadi S, Amini M, Sabzi M (2015) Synthesis and characterization of hydroxypropyl methylcellulose-g-poly(acrylamide)/LAPONITE® RD nanocomposites as novel magnetic- and pH-sensitive carriers for controlled drug release. RSC Adv 5:44516–44523. https://doi.org/10.1039/C5RA03731J

    Article  Google Scholar 

  51. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364. https://doi.org/10.1016/S0065-3233(08)60528-8

    Article  Google Scholar 

  52. Mizutani Y, Matsumura Y, Imamura K et al (2003) Effects of water activity and lipid addition on secondary structure of zein in powder systems. J Agric Food Chem 51:229–235. https://doi.org/10.1021/jf0205007

    Article  Google Scholar 

  53. Matsushima N, Danno G, Takezawa H, Izumi Y (1997) Three-dimensional structure of maize alpha-zein proteins studied by small-angle X-ray scattering. Biochim Biophys Acta-Protein Struct Mol Enzym 1339:14–22. https://doi.org/10.1016/S0167-4838(96)00212-9

    Article  Google Scholar 

  54. Benami A, Santana G, Ortiz A et al (2007) Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4/NH 3. Nanotechnology 18:155704. https://doi.org/10.1088/0957-4484/18/15/155704

    Article  Google Scholar 

  55. Li Y, Wang L, Yin S et al (2011) Rapid crystallization process of amorphous silicon nitride. J Am Ceram Soc 94:4169–4173. https://doi.org/10.1111/j.1551-2916.2011.04914.x

    Article  Google Scholar 

  56. Kopani M, Mikula M, Pinčík E et al (2014) FT IR spectroscopy of nitric acid oxidation of silicon with hafnium oxide very thin layer. Appl Surf Sci 301:24–27. https://doi.org/10.1016/j.apsusc.2014.01.124

    Article  Google Scholar 

  57. Pluchery O, Costantini J-M (2012) Infrared spectroscopy characterization of 3C–SiC epitaxial layers on silicon. J Phys D Appl Phys 45:495101. https://doi.org/10.1088/0022-3727/45/49/495101

    Article  Google Scholar 

  58. Huang X, Brittain WJ (2001) Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules 34:3255–3260. https://doi.org/10.1021/ma001670s

    Article  Google Scholar 

  59. Rouf TB, Kokini JL (2016) Biodegradable biopolymer–graphene nanocomposites. J Mater Sci 51:9915–9945. https://doi.org/10.1007/s10853-016-0238-4

    Article  Google Scholar 

  60. Peles Z, Zilberman M (2012) Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties. Acta Biomater 8:209–217. https://doi.org/10.1016/j.actbio.2011.08.022

    Article  Google Scholar 

  61. Martin-Polo M, Mauguin C, Voilley A (1992) Hydrophobic films and their efficiency against moisture transfer. 1. Influence of the film preparation technique. J Agric Food Chem 40:407–412

    Article  Google Scholar 

  62. Martin-Polo M, Voilley A, Blond G et al (1992) Hydrophobic films and their efficiency against moisture transfer. 2. Influence of the physical state. J Agric Food Chem 40:413–418

    Article  Google Scholar 

  63. Bras J, Vaca-Garcia C, Borredon M-E, Glasser W (2007) Oxygen and water vapor permeability of fully substituted long chain cellulose esters (LCCE). Cellulose 14:367–374. https://doi.org/10.1007/s10570-007-9123-2

    Article  Google Scholar 

  64. Hirvikorpi T, Vähä-Nissi M, Harlin A et al (2011) Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al2O3 double-coating. Appl Surf Sci 257:9451–9454. https://doi.org/10.1016/j.apsusc.2011.06.031

    Article  Google Scholar 

  65. Tunç S, Duman O, Polat TG (2016) Effects of montmorillonite on properties of methyl cellulose/carvacrol based active antimicrobial nanocomposites. Carbohyd Polym 150:259–268. https://doi.org/10.1016/j.carbpol.2016.05.019

    Article  Google Scholar 

  66. Mahmoudian S, Wahit MU, Ismail AF, Yussuf AA (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohyd Polym 88:1251–1257. https://doi.org/10.1016/j.carbpol.2012.01.088

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Christopher Gilpin and Laurie Mueller for their assistance with TEM experiments, and Dr. Patricia Bishop and Dr. Hartmut Hedderich for their assistance with AFM and FTIR experiments. We would like to acknowledge USDA Hatch funds and the Scholle Endowment for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef L. Kokini.

Ethics declarations

Conflict of interest

The authors would like to disclose that there are no conflicts of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Detailed description of characterization methods (DOCX 850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouf, T.B., Schmidt, G. & Kokini, J.L. Zein–Laponite nanocomposites with improved mechanical, thermal and barrier properties. J Mater Sci 53, 7387–7402 (2018). https://doi.org/10.1007/s10853-018-2061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2061-6

Keywords

Navigation