Skip to main content
Erschienen in: Journal of Materials Science 11/2018

20.02.2018 | Composites

Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites

verfasst von: Nabil Chamroune, Diaa Mereib, Florence Delange, Nathalie Caillault, Yongfeng Lu, Jean-Luc Grosseau-Poussard, Jean-François Silvain

Erschienen in: Journal of Materials Science | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The optimization of metal–matrix composite material is linked firstly with the intrinsic properties of the matrix and the reinforcement used and secondly with the reinforcement–matrix interfacial zone and the distribution/orientation of the reinforcement inside the metal–matrix. Flake powder metallurgy was used to fabricate graphite flake reinforced aluminum matrix (Al/GF) composites fabricated by vacuum hot pressing. Two types of aluminum powders morphology were used: spherical (AlS) and flake (AlF) powders. A higher thermal conductivity in the in-plane direction of the graphite flakes was obtained for Al/GF composite materials fabricated with aluminum flake powder. In addition to a better orientation of the GF in the flake aluminum matrix, a 3D puckered surface and plane surface are formed at the Al/GF interface in, respectively, AlS/GF and AlF/GF composite materials. Due to the morphology incompatibility between the graphite flakes and the spherical powder, the damaged inner structure of GF contributes to a limited enhancement of thermal conductivity in AlS/GF composite materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zweben C (1998) Advances in composite materials for thermal management in electronic packaging. JOM 50(6):47–51CrossRef Zweben C (1998) Advances in composite materials for thermal management in electronic packaging. JOM 50(6):47–51CrossRef
2.
Zurück zum Zitat Zweben C (2005) Ultrahigh-thermal-conductivity packaging materials. In: Annual IEEE semiconductor thermal measurement and management symposium, pp 168–174 Zweben C (2005) Ultrahigh-thermal-conductivity packaging materials. In: Annual IEEE semiconductor thermal measurement and management symposium, pp 168–174
3.
Zurück zum Zitat Rohatgi PK (1993) Metal–matrix composites. Defence Sci J 43(4):323–349CrossRef Rohatgi PK (1993) Metal–matrix composites. Defence Sci J 43(4):323–349CrossRef
4.
Zurück zum Zitat Mallik S, Ekere N, Best C, Bhatti R (2011) Investigation of thermal management materials for automotive electronic control units. Appl Therm Eng 31(2–3):355–362CrossRef Mallik S, Ekere N, Best C, Bhatti R (2011) Investigation of thermal management materials for automotive electronic control units. Appl Therm Eng 31(2–3):355–362CrossRef
5.
Zurück zum Zitat Yoshida K, Morigami H (2004) Thermal properties of diamond/copper composite material. Microelectron Reliab 44(2):303–308CrossRef Yoshida K, Morigami H (2004) Thermal properties of diamond/copper composite material. Microelectron Reliab 44(2):303–308CrossRef
6.
Zurück zum Zitat Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ (2006) Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity. Compos Sci Technol 66(15):2677–2685CrossRef Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ (2006) Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity. Compos Sci Technol 66(15):2677–2685CrossRef
7.
Zurück zum Zitat Beffort O, Khalid FA, Weber L, Ruch P, Klotz UE, Meier S, Kleiner S (2006) Interface formation in infiltrated Al(Si)/diamond composites. Diam Relat Mater 15(9):1250–1260CrossRef Beffort O, Khalid FA, Weber L, Ruch P, Klotz UE, Meier S, Kleiner S (2006) Interface formation in infiltrated Al(Si)/diamond composites. Diam Relat Mater 15(9):1250–1260CrossRef
8.
Zurück zum Zitat Kurita H, Feuillet E, Guillemet T, Heintz J-M, Kawasaki A, Silvain J-F (2014) Simple fabrication and characterization of discontinuous carbon fiber reinforced aluminum matrix composite for lightweight heat sink applications. Acta Metall Sin (English Lett) 27(4):714–722CrossRef Kurita H, Feuillet E, Guillemet T, Heintz J-M, Kawasaki A, Silvain J-F (2014) Simple fabrication and characterization of discontinuous carbon fiber reinforced aluminum matrix composite for lightweight heat sink applications. Acta Metall Sin (English Lett) 27(4):714–722CrossRef
9.
Zurück zum Zitat Pierson HO (1993) Handbook of carbon, graphite, diamond and fullerenes. Noyes Publications, Park Ridge, pp 194–195 Pierson HO (1993) Handbook of carbon, graphite, diamond and fullerenes. Noyes Publications, Park Ridge, pp 194–195
10.
Zurück zum Zitat Chen JK, Huang IS (2013) Thermal properties of aluminum-graphite composites by powder metallurgy. Compos Part B Eng 44(1):698–703CrossRef Chen JK, Huang IS (2013) Thermal properties of aluminum-graphite composites by powder metallurgy. Compos Part B Eng 44(1):698–703CrossRef
11.
Zurück zum Zitat Murakami M, Nishiki N, Nakamura K, Ehara J, Okada H, Kouzaki T, Watanabe K et al (1992) Yoshimura, S. High-quality and highly oriented graphite block from polycondensation polymer films. Carbon 30(2):255–262CrossRef Murakami M, Nishiki N, Nakamura K, Ehara J, Okada H, Kouzaki T, Watanabe K et al (1992) Yoshimura, S. High-quality and highly oriented graphite block from polycondensation polymer films. Carbon 30(2):255–262CrossRef
12.
Zurück zum Zitat Klemens PG, Pedraza DF (1994) Thermal conductivity of graphite in the basal plane. Carbon 32(4):735–741CrossRef Klemens PG, Pedraza DF (1994) Thermal conductivity of graphite in the basal plane. Carbon 32(4):735–741CrossRef
13.
Zurück zum Zitat Fu Q, Yang J, Chen Y, Li D, Xu D (2015) Experimental evidence of very long intrinsic phonon mean free path along the c-axis of graphite. Appl Phys Lett 106(3):031905CrossRef Fu Q, Yang J, Chen Y, Li D, Xu D (2015) Experimental evidence of very long intrinsic phonon mean free path along the c-axis of graphite. Appl Phys Lett 106(3):031905CrossRef
14.
Zurück zum Zitat Huang Y, Su Y, Li S, Ouyang Q, Zhang G, Zhang L, Zhang D (2016) Fabrication of graphite film/aluminum composites by vacuum hot pressing: process optimization and thermal conductivity. Compos B Eng 107:43–50CrossRef Huang Y, Su Y, Li S, Ouyang Q, Zhang G, Zhang L, Zhang D (2016) Fabrication of graphite film/aluminum composites by vacuum hot pressing: process optimization and thermal conductivity. Compos B Eng 107:43–50CrossRef
15.
Zurück zum Zitat Tao P, Shang W, Song C, Shen Q, Zhang F, Luo Z, Yi N, Zhang D, Deng T (2015) Bioinspired engineering of thermal materials. Adv Mater 27(3):428–463CrossRef Tao P, Shang W, Song C, Shen Q, Zhang F, Luo Z, Yi N, Zhang D, Deng T (2015) Bioinspired engineering of thermal materials. Adv Mater 27(3):428–463CrossRef
16.
Zurück zum Zitat Metzler RA, Abrecht M, Olabisi RM, Ariosa D, Johnson CJ, Frazer BH, Coppersmith SN et al (2007) Architecture of columnar nacre, and implications for its formation mechanism. Phys Rev Lett 98(26):268102CrossRef Metzler RA, Abrecht M, Olabisi RM, Ariosa D, Johnson CJ, Frazer BH, Coppersmith SN et al (2007) Architecture of columnar nacre, and implications for its formation mechanism. Phys Rev Lett 98(26):268102CrossRef
17.
Zurück zum Zitat Rousseau M, Lopez E, Stempflé P, Brendlé M, Franke L, Guette A, Naslain R et al (2005) Multiscale structure of sheet nacre. Biomaterials 26(31):6254–6262CrossRef Rousseau M, Lopez E, Stempflé P, Brendlé M, Franke L, Guette A, Naslain R et al (2005) Multiscale structure of sheet nacre. Biomaterials 26(31):6254–6262CrossRef
18.
Zurück zum Zitat Fan G, Xu R, Tan Z, Zhang D, Li Z (2014) Development of flake powder metallurgy in fabricating metal–matrix composites: a review. Acta Metall Sin (English Lett) 27(5):806–815CrossRef Fan G, Xu R, Tan Z, Zhang D, Li Z (2014) Development of flake powder metallurgy in fabricating metal–matrix composites: a review. Acta Metall Sin (English Lett) 27(5):806–815CrossRef
19.
Zurück zum Zitat Jiang L, Fan G, Li Z, Kai X, Zhang D, Chen Z, Humphries S et al (2011) An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon 49(6):1965–1971CrossRef Jiang L, Fan G, Li Z, Kai X, Zhang D, Chen Z, Humphries S et al (2011) An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon 49(6):1965–1971CrossRef
20.
Zurück zum Zitat Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50(5):1993–1998CrossRef Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50(5):1993–1998CrossRef
21.
Zurück zum Zitat Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr Mater 66(6):331–334CrossRef Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr Mater 66(6):331–334CrossRef
22.
Zurück zum Zitat Jiang L, Li Z, Fan G, Zhang D (2011) A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility. Scr Mater 65(5):412–415CrossRef Jiang L, Li Z, Fan G, Zhang D (2011) A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility. Scr Mater 65(5):412–415CrossRef
23.
Zurück zum Zitat Li Z, Guo Q, Li Z, Fan G, Xiong D-B, Su Y, Zhang J et al (2015) Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 15(12):8077–8083CrossRef Li Z, Guo Q, Li Z, Fan G, Xiong D-B, Su Y, Zhang J et al (2015) Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 15(12):8077–8083CrossRef
24.
Zurück zum Zitat Weber L, Tavangar R (2007) On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. Scr Mater 57(11):988–991CrossRef Weber L, Tavangar R (2007) On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. Scr Mater 57(11):988–991CrossRef
25.
Zurück zum Zitat Azina C, Roger J, Joulain A, Mauchamp V, Mortaigne B, Lu YF, Silvain J-F (2018) Solid-liquid co-existent phase process: towards fully dense and thermally efficient Cu/C composite materials. J Alloy Compd 738:292–300CrossRef Azina C, Roger J, Joulain A, Mauchamp V, Mortaigne B, Lu YF, Silvain J-F (2018) Solid-liquid co-existent phase process: towards fully dense and thermally efficient Cu/C composite materials. J Alloy Compd 738:292–300CrossRef
26.
Zurück zum Zitat Molina JM, Louis E (2015) Anisotropy in thermal conductivity of graphite flakes-SiCp/matrix composites: implications in heat sinking design for thermal management applications. Mater Charact 109:107–115CrossRef Molina JM, Louis E (2015) Anisotropy in thermal conductivity of graphite flakes-SiCp/matrix composites: implications in heat sinking design for thermal management applications. Mater Charact 109:107–115CrossRef
27.
Zurück zum Zitat Zhou C, Huang W, Chen Z, Ji G, Wang ML, Chen D, Wang HW (2015) In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment. Compos B Eng 70:256–262CrossRef Zhou C, Huang W, Chen Z, Ji G, Wang ML, Chen D, Wang HW (2015) In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment. Compos B Eng 70:256–262CrossRef
28.
Zurück zum Zitat Li W, Liu Y, Wu G (2015) Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon 95:545–551CrossRef Li W, Liu Y, Wu G (2015) Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon 95:545–551CrossRef
29.
Zurück zum Zitat Prieto R, Molina JM, Narciso J, Louis E (2011) Thermal conductivity of graphite flakes-SiC particles/metal composites. Compos Part A Appl Sci Manuf 42(12):1970–1977CrossRef Prieto R, Molina JM, Narciso J, Louis E (2011) Thermal conductivity of graphite flakes-SiC particles/metal composites. Compos Part A Appl Sci Manuf 42(12):1970–1977CrossRef
30.
Zurück zum Zitat Kurita H, Miyazaki T, Kawasaki A, Lu Y, Silvain J-F (2015) Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Compos A Appl Sci Manuf 73:125–131CrossRef Kurita H, Miyazaki T, Kawasaki A, Lu Y, Silvain J-F (2015) Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Compos A Appl Sci Manuf 73:125–131CrossRef
31.
Zurück zum Zitat Oddone V, Boerner B, Reich S (2017) Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity. Sci Technol Adv Mater 18(1):180–186CrossRef Oddone V, Boerner B, Reich S (2017) Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity. Sci Technol Adv Mater 18(1):180–186CrossRef
32.
Zurück zum Zitat Liu Q, He X-B, Ren S-B, Zhang C, Ting-Ting L, Qu X-H (2014) Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. J Alloy Compd 587:255–259CrossRef Liu Q, He X-B, Ren S-B, Zhang C, Ting-Ting L, Qu X-H (2014) Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. J Alloy Compd 587:255–259CrossRef
33.
Zurück zum Zitat Chen J, Ren S, He X, Qu X (2017) Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon 121:25–34CrossRef Chen J, Ren S, He X, Qu X (2017) Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon 121:25–34CrossRef
34.
Zurück zum Zitat Seldin EJ (1966) Stress–strain properties of polycrystalline graphites in tension and compression at room temperature. Carbon 4(2):177–191CrossRef Seldin EJ (1966) Stress–strain properties of polycrystalline graphites in tension and compression at room temperature. Carbon 4(2):177–191CrossRef
35.
Zurück zum Zitat Hasani S, Panjepour M, Shamanian M (2012) The oxidation mechanism of pure aluminum powder particles. Oxid Metals 78(3–4):179–195CrossRef Hasani S, Panjepour M, Shamanian M (2012) The oxidation mechanism of pure aluminum powder particles. Oxid Metals 78(3–4):179–195CrossRef
36.
Zurück zum Zitat Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81(8):1995–2012CrossRef Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81(8):1995–2012CrossRef
37.
Zurück zum Zitat Vidano RP, Fischbach DB, Willis LJ, Loehr TM (1981) Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun 39(2):341–344CrossRef Vidano RP, Fischbach DB, Willis LJ, Loehr TM (1981) Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun 39(2):341–344CrossRef
38.
Zurück zum Zitat Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130CrossRef Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130CrossRef
39.
Zurück zum Zitat Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1291CrossRef Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1291CrossRef
40.
Zurück zum Zitat Ho CY, Powell RW, Liley PE (1972) Thermal conductivity of the elements. J Phys Chem Ref Data 1(2):279–421CrossRef Ho CY, Powell RW, Liley PE (1972) Thermal conductivity of the elements. J Phys Chem Ref Data 1(2):279–421CrossRef
41.
Zurück zum Zitat Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699CrossRef Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699CrossRef
42.
Zurück zum Zitat Ren S, Chen J, He X, Qu X (2018) Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering. Carbon 127:412–423CrossRef Ren S, Chen J, He X, Qu X (2018) Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering. Carbon 127:412–423CrossRef
43.
Zurück zum Zitat Molina JM, Prieto R, Narciso J, Louis E (2009) The effect of porosity on the thermal conductivity of Al-12 wt% Si/SiC composites. Scr Mater 60(7):582–585CrossRef Molina JM, Prieto R, Narciso J, Louis E (2009) The effect of porosity on the thermal conductivity of Al-12 wt% Si/SiC composites. Scr Mater 60(7):582–585CrossRef
44.
Zurück zum Zitat Prasher R (2008) Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys Rev B Condens Matter Mater Phys 77(7):075424CrossRef Prasher R (2008) Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys Rev B Condens Matter Mater Phys 77(7):075424CrossRef
45.
Zurück zum Zitat Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605–668CrossRef Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605–668CrossRef
Metadaten
Titel
Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites
verfasst von
Nabil Chamroune
Diaa Mereib
Florence Delange
Nathalie Caillault
Yongfeng Lu
Jean-Luc Grosseau-Poussard
Jean-François Silvain
Publikationsdatum
20.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2139-1

Weitere Artikel der Ausgabe 11/2018

Journal of Materials Science 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.