Skip to main content
Erschienen in: Journal of Materials Science 19/2018

06.03.2018 | Mechanochemical Synthesis

Nanoscale mechanisms for high-pressure mechanochemistry: a phase field study

verfasst von: Mahdi Javanbakht, Valery I. Levitas

Erschienen in: Journal of Materials Science | Ausgabe 19/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coupled evolution of a high-pressure phase (HPP) and dislocations, including dislocation pileups and dislocations generated due to phase transformation (PT), under compression and shear of a nanograined bicrystal, is considered as a model for high-pressure mechanochemistry. Recently developed phase field approach for the interaction between PTs and dislocations at large strains and a finite element analysis are utilized. Periodic boundary conditions for displacements are applied to the lateral surfaces. It is confirmed that the shear-induced dislocation pileups may reduce the PT pressure by an order of magnitude in comparison with hydrostatic loading, and even below phase equilibrium pressure, as it was observed in some experiments. In contrast to the formulation with boundary conditions for lateral stresses, which do not exhibit the sample size effect, periodic boundary conditions lead to some suppression of PT with decreased grain and sample sizes. The local transformation work-based phase equilibrium condition is met for most of the points of the stationary phase interfaces. The interface configurations also correspond in the most cases to the constant pressure contour but with different values for different loadings. Rarely, the same is true for the constant shear stress contours. Similar phase equilibrium conditions are satisfied for the transformation work expressed in terms of stresses averaged over the transformed grain and HPP. These conditions can be used to scale up results of the nanoscale studies to the coarse-grained microscale theory. During unloading, the PT, dislocations, and plastic shear are fully reversible. Even if one pins all the dislocations before unloading starts, still the entire HPP returns back. Thus, problem with modeling metastability of the HPPs still remains open. Obtained results are applicable for interpretation of experiments on high-pressure torsion with diamond or ceramic anvils, friction, surface processing, and probably on ball milling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Levitas VI (2004) Continuum mechanical fundamentals of mechanochemistry. In: Gogotsi Y, Domnich V (eds) High pressure surface science and engineering. Section 3. Institute of Physics Publishing, Bristol, pp 159–292 Levitas VI (2004) Continuum mechanical fundamentals of mechanochemistry. In: Gogotsi Y, Domnich V (eds) High pressure surface science and engineering. Section 3. Institute of Physics Publishing, Bristol, pp 159–292
2.
Zurück zum Zitat Levitas VI (2004) High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments. Phys Rev B 70:1–24CrossRef Levitas VI (2004) High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments. Phys Rev B 70:1–24CrossRef
3.
Zurück zum Zitat Balema VP, Dennis KW, Pecharsky VK (2000) Rapid solid-state transformation of tetrahedral \([AlH_4]^-\) into octahedral [AlH6]3- in lithium aluminohydride. Chem Commun 17:1665–1666CrossRef Balema VP, Dennis KW, Pecharsky VK (2000) Rapid solid-state transformation of tetrahedral \([AlH_4]^-\) into octahedral [AlH6]3- in lithium aluminohydride. Chem Commun 17:1665–1666CrossRef
4.
Zurück zum Zitat Balema VP, Pecharsky VK, Dennis KW (2000) Solid state phase transformations in \(LiAlH_4\) during high energy ball-milling. J Alloys Compd 313:69–74CrossRef Balema VP, Pecharsky VK, Dennis KW (2000) Solid state phase transformations in \(LiAlH_4\) during high energy ball-milling. J Alloys Compd 313:69–74CrossRef
5.
Zurück zum Zitat Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef
6.
Zurück zum Zitat Suryanarayana C (2008) Recent developments in mechanical alloying. Rev Adv Mater Sci 18:203–211 Suryanarayana C (2008) Recent developments in mechanical alloying. Rev Adv Mater Sci 18:203–211
7.
Zurück zum Zitat Delogu F (2011) A few details of the austenite to martensite phase transformation in 304 stainless steel powders under mechanical processing. Acta Mater 59:2069–2074CrossRef Delogu F (2011) A few details of the austenite to martensite phase transformation in 304 stainless steel powders under mechanical processing. Acta Mater 59:2069–2074CrossRef
8.
Zurück zum Zitat Delogu F (2012) Are processing conditions similar in ball milling and high-pressure torsion? The case of the tetragonal-to-monoclinic phase transition in ZrO2 powders. Scripta Mater 67:40–343CrossRef Delogu F (2012) Are processing conditions similar in ball milling and high-pressure torsion? The case of the tetragonal-to-monoclinic phase transition in ZrO2 powders. Scripta Mater 67:40–343CrossRef
9.
Zurück zum Zitat Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47:355–414CrossRef Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47:355–414CrossRef
10.
Zurück zum Zitat Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659CrossRef Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659CrossRef
11.
Zurück zum Zitat Balaz P et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637CrossRef Balaz P et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637CrossRef
12.
Zurück zum Zitat Bridgman PW (1935) Effect of high shear stress combined with high hydrostatic pressure. Phys Rev 48:825–847CrossRef Bridgman PW (1935) Effect of high shear stress combined with high hydrostatic pressure. Phys Rev 48:825–847CrossRef
13.
Zurück zum Zitat Perez-Prado MT, Zhilyaev AP (2009) First experimental observation of shear induced hcp to bcc transformation in pure Zr. Phys Rev Lett 102:1–2CrossRef Perez-Prado MT, Zhilyaev AP (2009) First experimental observation of shear induced hcp to bcc transformation in pure Zr. Phys Rev Lett 102:1–2CrossRef
14.
Zurück zum Zitat Zhilyaev AP, Sabirov I, Gonzlez-Doncel G, Molina-Aldaregua J, Srinivasarao B, Prez-Prado MT (2011) Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions. Mater Sci Eng A 528:3496–3505CrossRef Zhilyaev AP, Sabirov I, Gonzlez-Doncel G, Molina-Aldaregua J, Srinivasarao B, Prez-Prado MT (2011) Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions. Mater Sci Eng A 528:3496–3505CrossRef
15.
Zurück zum Zitat Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A 652:325–352CrossRef Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A 652:325–352CrossRef
16.
Zurück zum Zitat Aleksandrova MM, Blank VD, Buga SG (1993) Phase transitions in Ge and Si under shear stress at pressures to 12 GPa and P-T- diagrams of these elements. Solid State Phys 35:1308–1317 Aleksandrova MM, Blank VD, Buga SG (1993) Phase transitions in Ge and Si under shear stress at pressures to 12 GPa and P-T- diagrams of these elements. Solid State Phys 35:1308–1317
17.
Zurück zum Zitat Blank VD et al (1994) Is \( C_{60} \) fullerite harder than diamond? Phys Lett A 188:281–286CrossRef Blank VD et al (1994) Is \( C_{60} \) fullerite harder than diamond? Phys Lett A 188:281–286CrossRef
18.
Zurück zum Zitat Popov M (2005) Raman and IR study of high-pressure atomic phase of nitrogen. Phys Lett A 334:317–325CrossRef Popov M (2005) Raman and IR study of high-pressure atomic phase of nitrogen. Phys Lett A 334:317–325CrossRef
19.
Zurück zum Zitat Novikov VILNV, Polotnyak SB, Shvedov LK (1999) Regularities of phase transformations and plastic straining of materials in compression and shear on diamond anvils: experiments and theory. J Superhard Mater 21(3):36–48 Novikov VILNV, Polotnyak SB, Shvedov LK (1999) Regularities of phase transformations and plastic straining of materials in compression and shear on diamond anvils: experiments and theory. J Superhard Mater 21(3):36–48
20.
Zurück zum Zitat Ji C, Levitas VI, Zhu H, Chaudhuri J, Marathe A, Ma Y (2012) Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure. Proc Natl Acad Sci USA 109(47):19108–19112CrossRef Ji C, Levitas VI, Zhu H, Chaudhuri J, Marathe A, Ma Y (2012) Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure. Proc Natl Acad Sci USA 109(47):19108–19112CrossRef
21.
Zurück zum Zitat Blank VD, Estrin EI (2014) Phase transitions in solids under high pressure. CRC Press, Boca Raton Blank VD, Estrin EI (2014) Phase transitions in solids under high pressure. CRC Press, Boca Raton
22.
Zurück zum Zitat Popov M, Kyotania M, Kogaa Y (2003) Superhard phase of single wall carbon nanotube: comparison with fullerite C60 and diamond. Diam Relat Mater 12:833–839CrossRef Popov M, Kyotania M, Kogaa Y (2003) Superhard phase of single wall carbon nanotube: comparison with fullerite C60 and diamond. Diam Relat Mater 12:833–839CrossRef
23.
Zurück zum Zitat Eremets MI et al (2004) Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures. J Chem Phys 121:11296–11300CrossRef Eremets MI et al (2004) Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures. J Chem Phys 121:11296–11300CrossRef
24.
Zurück zum Zitat Levitas VI, Shvedov LK (2002) Low pressure phase transformation from rhombohedral to cubic BN: experiment and theory. Phys Rev B 65:1–6CrossRef Levitas VI, Shvedov LK (2002) Low pressure phase transformation from rhombohedral to cubic BN: experiment and theory. Phys Rev B 65:1–6CrossRef
25.
Zurück zum Zitat Levitas VI, Ma Y, Selvi E, Wu J, Patten JA (2012) High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure. Phys Rev B 85:054114CrossRef Levitas VI, Ma Y, Selvi E, Wu J, Patten JA (2012) High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure. Phys Rev B 85:054114CrossRef
26.
Zurück zum Zitat Srinivasarao B, Zhilyaev AP, Prez-Prado MT (2011) Orientation dependency of the alpha to omega plus beta transformation in commercially pure zirconium by high-pressure torsion. Scripta Mater 65(3):241–244CrossRef Srinivasarao B, Zhilyaev AP, Prez-Prado MT (2011) Orientation dependency of the alpha to omega plus beta transformation in commercially pure zirconium by high-pressure torsion. Scripta Mater 65(3):241–244CrossRef
27.
Zurück zum Zitat Razavi-Khosroshahi H, Edalati K, Arita M, Horita Z, Fuji M (2016) Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics. Scripta Mater 124:59–62CrossRef Razavi-Khosroshahi H, Edalati K, Arita M, Horita Z, Fuji M (2016) Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics. Scripta Mater 124:59–62CrossRef
28.
Zurück zum Zitat Levitas VI, Javanbakht M (2014) Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale 6:162–166CrossRef Levitas VI, Javanbakht M (2014) Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale 6:162–166CrossRef
29.
Zurück zum Zitat Levitas VI, Zarechnyy OM (2006) Kinetics of strain-induced structural changes under high pressure. J Phys Chem B 110:16035–16046CrossRef Levitas VI, Zarechnyy OM (2006) Kinetics of strain-induced structural changes under high pressure. J Phys Chem B 110:16035–16046CrossRef
30.
Zurück zum Zitat Levitas VI, Zarechnyy O (2010) Modeling and simulation of strain-induced phase transformations under compression in a diamond anvil cell. Phys Rev B 82:1–12 Levitas VI, Zarechnyy O (2010) Modeling and simulation of strain-induced phase transformations under compression in a diamond anvil cell. Phys Rev B 82:1–12
31.
Zurück zum Zitat Levitas VI, Zarechnyy O (2010) Modeling and simulation of strain-induced phase transformations under compression and torsion in a rotational diamond anvil cell. Phys Rev B 82:1–15 Levitas VI, Zarechnyy O (2010) Modeling and simulation of strain-induced phase transformations under compression and torsion in a rotational diamond anvil cell. Phys Rev B 82:1–15
32.
Zurück zum Zitat Feng B, Levitas VI (2013) Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: effect of contact sliding. J Appl Phys 114:1–13 Feng B, Levitas VI (2013) Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: effect of contact sliding. J Appl Phys 114:1–13
33.
Zurück zum Zitat Feng B, Levitas VI (2016) Effects of the gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell. J Appl Phys 119:1–12 Feng B, Levitas VI (2016) Effects of the gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell. J Appl Phys 119:1–12
34.
Zurück zum Zitat Levitas VI, Chen H, Xiong L (2017) Triaxial-stress-induced homogeneous hysteresis-free first-order phase transformations with stable intermediate phases. Phys Rev Lett 118:1–5CrossRef Levitas VI, Chen H, Xiong L (2017) Triaxial-stress-induced homogeneous hysteresis-free first-order phase transformations with stable intermediate phases. Phys Rev Lett 118:1–5CrossRef
35.
Zurück zum Zitat Levitas VI, Chen H, Xiong L (2017) Lattice instability during phase transformations under multiaxial stress: modified transformation work criterion. Phys Rev B 96:1–11CrossRef Levitas VI, Chen H, Xiong L (2017) Lattice instability during phase transformations under multiaxial stress: modified transformation work criterion. Phys Rev B 96:1–11CrossRef
36.
Zurück zum Zitat Jin YM, Artemev A, Khachaturyan AG (2001) Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of \(\zeta _2\) martensite in AuCd alloys. Acta Mater 49:2309–2320CrossRef Jin YM, Artemev A, Khachaturyan AG (2001) Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of \(\zeta _2\) martensite in AuCd alloys. Acta Mater 49:2309–2320CrossRef
37.
Zurück zum Zitat Wang Y, Khachaturyan AG (1997) Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater 45:759–773CrossRef Wang Y, Khachaturyan AG (1997) Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater 45:759–773CrossRef
38.
Zurück zum Zitat Levitas VI, Javanbakht M (2010) Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Phys Rev Lett 105:1–4CrossRef Levitas VI, Javanbakht M (2010) Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Phys Rev Lett 105:1–4CrossRef
39.
Zurück zum Zitat Cui S, Wan J, Zuo X, Chen N, Zhang J, Rong Y (2017) Three-dimensional, non-isothermal phase-field modeling of thermally and stress-induced martensitic transformations in shape memory alloys. Int J Solids Struct 109:1–11CrossRef Cui S, Wan J, Zuo X, Chen N, Zhang J, Rong Y (2017) Three-dimensional, non-isothermal phase-field modeling of thermally and stress-induced martensitic transformations in shape memory alloys. Int J Solids Struct 109:1–11CrossRef
40.
Zurück zum Zitat Toloui M, Militzer M (2018) Phase field modeling of the simultaneous formation of bainite and ferrite in TRIP steel. Acta Mater 144:786–800CrossRef Toloui M, Militzer M (2018) Phase field modeling of the simultaneous formation of bainite and ferrite in TRIP steel. Acta Mater 144:786–800CrossRef
41.
Zurück zum Zitat Xiea X, Kanga G, Kana Q, Yua C, Peng Q (2018) Phase field modeling for cyclic phase transition of NiTi shape memory alloy single crystal with super-elasticity. Comput Mater Sci 143:212–224CrossRef Xiea X, Kanga G, Kana Q, Yua C, Peng Q (2018) Phase field modeling for cyclic phase transition of NiTi shape memory alloy single crystal with super-elasticity. Comput Mater Sci 143:212–224CrossRef
42.
Zurück zum Zitat Wang YU, Jin YM, Cuitino AM, Khachaturyan AG (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater 49:1847–1857CrossRef Wang YU, Jin YM, Cuitino AM, Khachaturyan AG (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater 49:1847–1857CrossRef
43.
Zurück zum Zitat Wang YU, Li J (2010) Phase field modeling of defects and deformation. Acta Mater 58:1212–1235CrossRef Wang YU, Li J (2010) Phase field modeling of defects and deformation. Acta Mater 58:1212–1235CrossRef
44.
Zurück zum Zitat Hu SY, Chen LQ (2001) Solute segregation and coherent nucleation and growth near a dislocation—a phase-field model integrating defect and phase microstructures. Acta Mater 49:463–472CrossRef Hu SY, Chen LQ (2001) Solute segregation and coherent nucleation and growth near a dislocation—a phase-field model integrating defect and phase microstructures. Acta Mater 49:463–472CrossRef
45.
Zurück zum Zitat Hu SY, Chen LQ (2002) Diffuse-interface modeling of composition evolution in the presence of structural defects. Comput Mater Sci 23:270–282CrossRef Hu SY, Chen LQ (2002) Diffuse-interface modeling of composition evolution in the presence of structural defects. Comput Mater Sci 23:270–282CrossRef
46.
Zurück zum Zitat Jin YM, Khachaturyan AG (2001) Phase field microelasticity theory of dislocation dynamics in a polycrystal: model and three-dimensional simulations. Philos Mag Lett 81:607–616CrossRef Jin YM, Khachaturyan AG (2001) Phase field microelasticity theory of dislocation dynamics in a polycrystal: model and three-dimensional simulations. Philos Mag Lett 81:607–616CrossRef
47.
Zurück zum Zitat Koslowski M, Cuitino AM, Ortiz M (2002) A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. J Mech Phys Solids 50:2597–2635CrossRef Koslowski M, Cuitino AM, Ortiz M (2002) A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. J Mech Phys Solids 50:2597–2635CrossRef
48.
Zurück zum Zitat Hu SY, Li YL, Zheng YX, Chen LQ (2004) Effect of solutes on dislocation motion: a phase-field simulation. Int J Plast 20:403–425CrossRef Hu SY, Li YL, Zheng YX, Chen LQ (2004) Effect of solutes on dislocation motion: a phase-field simulation. Int J Plast 20:403–425CrossRef
49.
Zurück zum Zitat Hunter A, Le C, Saied F, Koslowski M (2010) Large-scale 3D phase field dislocation dynamics simulations on high-performance architectures. Int J High Perform Comput Appl 25:223–235CrossRef Hunter A, Le C, Saied F, Koslowski M (2010) Large-scale 3D phase field dislocation dynamics simulations on high-performance architectures. Int J High Perform Comput Appl 25:223–235CrossRef
50.
Zurück zum Zitat Levitas VI, Javanbakht M (2012) Advanced phase field approach to dislocation evolution. Phys Rev B 86:1–5CrossRef Levitas VI, Javanbakht M (2012) Advanced phase field approach to dislocation evolution. Phys Rev B 86:1–5CrossRef
51.
Zurück zum Zitat Levitas VI (2013) Phase-field theory for martensitic phase transformations at large strains. Int J Plast 49:85–118CrossRef Levitas VI (2013) Phase-field theory for martensitic phase transformations at large strains. Int J Plast 49:85–118CrossRef
52.
Zurück zum Zitat Levitas VI, Preston DL (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite \(\leftrightarrow \) Martensite. Phys Rev B 66:1–9 Levitas VI, Preston DL (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite \(\leftrightarrow \) Martensite. Phys Rev B 66:1–9
53.
Zurück zum Zitat Levitas VI, Preston DL (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis. Phys Rev B 66:1–11 Levitas VI, Preston DL (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis. Phys Rev B 66:1–11
54.
Zurück zum Zitat Levitas VI, Preston DL, Lee DW (2003) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys Rev B 68:1–24CrossRef Levitas VI, Preston DL, Lee DW (2003) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys Rev B 68:1–24CrossRef
55.
Zurück zum Zitat Levitas VI, Levin VA, Zingerman KM, Freiman EI (2009) Displacive phase transitions at large strains: phase-field theory and simulations. Phys Rev Lett 103:1–4CrossRef Levitas VI, Levin VA, Zingerman KM, Freiman EI (2009) Displacive phase transitions at large strains: phase-field theory and simulations. Phys Rev Lett 103:1–4CrossRef
56.
Zurück zum Zitat Levitas VI, Lee DW (2007) Athermal resistance to an interface motion in phase field theory of microstructure evolution. Phys Rev Lett 99:1–4CrossRef Levitas VI, Lee DW (2007) Athermal resistance to an interface motion in phase field theory of microstructure evolution. Phys Rev Lett 99:1–4CrossRef
57.
Zurück zum Zitat Levitas VI, Lee DW, Preston DL (2010) Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int J Plast 26:395–422CrossRef Levitas VI, Lee DW, Preston DL (2010) Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int J Plast 26:395–422CrossRef
58.
Zurück zum Zitat Idesman AV, Cho JY, Levitas VI (2008) Finite element modeling of dynamics of martensitic phase transitions. Appl Phys Lett 93:1–3CrossRef Idesman AV, Cho JY, Levitas VI (2008) Finite element modeling of dynamics of martensitic phase transitions. Appl Phys Lett 93:1–3CrossRef
59.
Zurück zum Zitat Cho JY, Idesman AV, Levitas VI, Park T (2012) Finite element simulations of dynamics of multivariant martensitic phase transitions based on Ginzburg–Landau theory. Int J Solids Struct 49:1973–1992CrossRef Cho JY, Idesman AV, Levitas VI, Park T (2012) Finite element simulations of dynamics of multivariant martensitic phase transitions based on Ginzburg–Landau theory. Int J Solids Struct 49:1973–1992CrossRef
60.
Zurück zum Zitat Levin VA, Levitas VI, Zingerman KM, Freiman EI (2013) Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int J Solids Struct 50:2914–2928CrossRef Levin VA, Levitas VI, Zingerman KM, Freiman EI (2013) Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int J Solids Struct 50:2914–2928CrossRef
61.
Zurück zum Zitat Levitas VI, Javanbakht M (2015) Thermodynamically consistent phase field approach to dislocation evolution at small and large strains. J Mech Phys Solids 82:345–366CrossRef Levitas VI, Javanbakht M (2015) Thermodynamically consistent phase field approach to dislocation evolution at small and large strains. J Mech Phys Solids 82:345–366CrossRef
62.
Zurück zum Zitat Javanbakht M, Levitas VI (2016) Phase field approach to dislocation evolution at large strains: computational aspects. Int J Solids Struct 82:95–110CrossRef Javanbakht M, Levitas VI (2016) Phase field approach to dislocation evolution at large strains: computational aspects. Int J Solids Struct 82:95–110CrossRef
63.
Zurück zum Zitat Levitas VI, Javanbakht M (2015) Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach. J Mech Phys Solids 82:287–319CrossRef Levitas VI, Javanbakht M (2015) Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach. J Mech Phys Solids 82:287–319CrossRef
64.
Zurück zum Zitat Javanbakht M, Levitas VI (2016) Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples. J Mech Phys Solids 82:164–185CrossRef Javanbakht M, Levitas VI (2016) Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples. J Mech Phys Solids 82:164–185CrossRef
65.
Zurück zum Zitat Levitas VI, Javanbakht M (2013) Phase field approach to interaction of phase transformation and dislocation evolution. Appl Phys Lett 102:1–4CrossRef Levitas VI, Javanbakht M (2013) Phase field approach to interaction of phase transformation and dislocation evolution. Appl Phys Lett 102:1–4CrossRef
66.
Zurück zum Zitat Javanbakht M, Levitas VI (2016) Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys Rev B 94:1–21CrossRef Javanbakht M, Levitas VI (2016) Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys Rev B 94:1–21CrossRef
67.
Zurück zum Zitat Levitas VI, Javanbakht M (2011) Phase-field approach to martensitic phase transformations: effect of martensite-martensite interface energy. Int J Mater Res 102:652–665CrossRef Levitas VI, Javanbakht M (2011) Phase-field approach to martensitic phase transformations: effect of martensite-martensite interface energy. Int J Mater Res 102:652–665CrossRef
68.
Zurück zum Zitat Lee DW, Kim H, Strachan A, Koslowski M (2011) Effect of core energy on mobility in a continuum dislocation model. Phys Rev B 83:1–10 Lee DW, Kim H, Strachan A, Koslowski M (2011) Effect of core energy on mobility in a continuum dislocation model. Phys Rev B 83:1–10
69.
Zurück zum Zitat Levitas VI, Roy AM, Preston DL (2013) Multiple twinning and variant-variant transformations in martensite: phase-field approach. Phys Rev B 88:054113CrossRef Levitas VI, Roy AM, Preston DL (2013) Multiple twinning and variant-variant transformations in martensite: phase-field approach. Phys Rev B 88:054113CrossRef
70.
71.
Zurück zum Zitat Shi J, Turteltaub S, Van der Giessen E (2011) Analysis of banded morphology in multiphase steels based on a discrete dislocation transformation model. Model Simul Mater Sci Eng 19:1–13CrossRef Shi J, Turteltaub S, Van der Giessen E (2011) Analysis of banded morphology in multiphase steels based on a discrete dislocation transformation model. Model Simul Mater Sci Eng 19:1–13CrossRef
72.
Zurück zum Zitat Levitas VI (1997) Phase transitions in elastoplastic materials: continuum thermomechanical theory and examples of control. Parts I and II. J Mech Phys Solids 45:923–947 and 1203–1222 Levitas VI (1997) Phase transitions in elastoplastic materials: continuum thermomechanical theory and examples of control. Parts I and II. J Mech Phys Solids 45:923–947 and 1203–1222
73.
Zurück zum Zitat Levitas VI (1998) Thermomechanical theory of martensitic phase transformations in inelastic materials. Int J Solids Struct 35:889–940CrossRef Levitas VI (1998) Thermomechanical theory of martensitic phase transformations in inelastic materials. Int J Solids Struct 35:889–940CrossRef
74.
Zurück zum Zitat Levitas VI (2000) Structural changes without stable intermediate state in inelastic material. Part I and II. Int J Plast 16:805–849 and 851–892 Levitas VI (2000) Structural changes without stable intermediate state in inelastic material. Part I and II. Int J Plast 16:805–849 and 851–892
75.
Zurück zum Zitat Levitas VI (2002) Critical thought experiment to choose the driving force for interface propagation in inelastic materials. Int J Plast 18:1499–1525CrossRef Levitas VI (2002) Critical thought experiment to choose the driving force for interface propagation in inelastic materials. Int J Plast 18:1499–1525CrossRef
76.
Zurück zum Zitat Fischer FD, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T (2000) A new view on transformation induced plasticity (TRIP). Int J Plast 16:723–748CrossRef Fischer FD, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T (2000) A new view on transformation induced plasticity (TRIP). Int J Plast 16:723–748CrossRef
77.
Zurück zum Zitat Cherkaoui M, Berveiller M, Sabar H (1998) Micromechanical modeling of the martensitic transformation induced plasticity (TRIP) in austenitic single crystals. Int J Plast 14:597–626CrossRef Cherkaoui M, Berveiller M, Sabar H (1998) Micromechanical modeling of the martensitic transformation induced plasticity (TRIP) in austenitic single crystals. Int J Plast 14:597–626CrossRef
78.
Zurück zum Zitat Cherkaoui M, Berveiller M (2000) Moving inelastic discontinuities and applications to martensitic phase transition. Arch Appl Mech 70:159–181CrossRef Cherkaoui M, Berveiller M (2000) Moving inelastic discontinuities and applications to martensitic phase transition. Arch Appl Mech 70:159–181CrossRef
79.
Zurück zum Zitat Fischer FD, Reisner G (1998) A Criterion for the martensitic transformation of a microregion in an elastic–plastic material. Acta Mater 46:2095–2102CrossRef Fischer FD, Reisner G (1998) A Criterion for the martensitic transformation of a microregion in an elastic–plastic material. Acta Mater 46:2095–2102CrossRef
80.
Zurück zum Zitat Beygelzimer Y, Estrin Y, Kulagin R (2015) Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing. Adv Eng Mater 17:1853–1861CrossRef Beygelzimer Y, Estrin Y, Kulagin R (2015) Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing. Adv Eng Mater 17:1853–1861CrossRef
82.
Zurück zum Zitat Kilmametov AR, Ivanisenko Yu, Mazilkin AA, Straumal BB, Gornakova AS, Fabrichnaya OB, Kriegel MJ, Rafaja D, Hahn H (2018) The \(\alpha -\omega \) and \(\beta -\omega \) phase transformations in Ti–Fe alloys under high-pressure torsion. Acta Mater 144:337–351CrossRef Kilmametov AR, Ivanisenko Yu, Mazilkin AA, Straumal BB, Gornakova AS, Fabrichnaya OB, Kriegel MJ, Rafaja D, Hahn H (2018) The \(\alpha -\omega \) and \(\beta -\omega \) phase transformations in Ti–Fe alloys under high-pressure torsion. Acta Mater 144:337–351CrossRef
83.
Zurück zum Zitat Straumal BB, Kilmametov AR, Ivanisenko Yu, Mazilkin AA, Valiev RZ, Afonikova NS, Gornakova AS, Hahn H (2018) Diffusive and displacive phase transitions in Ti–Fe and Ti–Co alloys under high pressure torsion. J Alloys Compd 735:2281–2286CrossRef Straumal BB, Kilmametov AR, Ivanisenko Yu, Mazilkin AA, Valiev RZ, Afonikova NS, Gornakova AS, Hahn H (2018) Diffusive and displacive phase transitions in Ti–Fe and Ti–Co alloys under high pressure torsion. J Alloys Compd 735:2281–2286CrossRef
Metadaten
Titel
Nanoscale mechanisms for high-pressure mechanochemistry: a phase field study
verfasst von
Mahdi Javanbakht
Valery I. Levitas
Publikationsdatum
06.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2175-x

Weitere Artikel der Ausgabe 19/2018

Journal of Materials Science 19/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.