Skip to main content
Erschienen in: Journal of Materials Science 14/2018

17.04.2018 | Metals

Microstructure evolution of Cu–30Zn during friction stir welding

verfasst von: X. C. Liu, Y. F. Sun, T. Nagira, K. Ushioda, H. Fujii

Erschienen in: Journal of Materials Science | Ausgabe 14/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructure evolution of Cu–30Zn during the deformation and cooling stages of friction stir welding was separately investigated by employing the in-process rapid cooling, tool “stop action”, and subsequent short-time annealing. A pure copper foil was inserted into the butting surfaces of the two workpieces to show the microstructure evolution path. The microstructure along the material flow path was investigated by the EBSD technique. At the weld’s upper part, continuous material flow occurs nearly over the whole range of the shoulder. The initial coarse grains are refined by the discontinuous dynamic recrystallization (DDRX) accompanied by the annealing twinning. During the material flow, the grain structure evolution is dominated by the annealing twinning during the thermally activated grain boundary migration and the subsequent twin destruction due to further deformation, resulting in a nearly constant grain size. Finally, normal grain growth occurs at the cooling period. At the lower part, the material transfers in a very thin layer near the probe surface and rapidly forms stable band structures. Due to the lower heat generation and higher strain rate, the mechanical twinning occurs in front of the probe. These deformation twins can provide additional nucleation sites for the DDRX via the twin destruction caused by further deformation. The higher strain rate in the weld’s lower part contributes to the finer grains than that of the upper part grains. However, due to the shoulder’s coverage, the lower part undergoes a longer cooling period than the upper part, and thus more significant grain growth occurs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R: Rep 50(1):1–78CrossRef Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R: Rep 50(1):1–78CrossRef
3.
Zurück zum Zitat Davis JR (ed) (2001) ASM specialty handbook: copper and copper alloys. ASM International, Materials Park, OH Davis JR (ed) (2001) ASM specialty handbook: copper and copper alloys. ASM International, Materials Park, OH
4.
Zurück zum Zitat Park HS, Kimura T, Murakami T, Nagano Y, Nakata K, Ushio M (2004) Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy. Mater Sci Eng, A 371(1):160–169CrossRef Park HS, Kimura T, Murakami T, Nagano Y, Nakata K, Ushio M (2004) Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy. Mater Sci Eng, A 371(1):160–169CrossRef
5.
Zurück zum Zitat Meran C (2006) The joint properties of brass plates by friction stir welding. Mater Des 27(9):719–726CrossRef Meran C (2006) The joint properties of brass plates by friction stir welding. Mater Des 27(9):719–726CrossRef
6.
Zurück zum Zitat Cam G, Serindağ HT, Cakan A, Mistikoglu S, Yavuz H (2008) The effect of weld parameters on friction stir welding of brass plates. Materialwiss Werkstofftech 39(6):394–399CrossRef Cam G, Serindağ HT, Cakan A, Mistikoglu S, Yavuz H (2008) The effect of weld parameters on friction stir welding of brass plates. Materialwiss Werkstofftech 39(6):394–399CrossRef
7.
Zurück zum Zitat Xie GM, Ma ZY, Geng L (2008) Effects of friction stir welding parameters on microstructures and mechanical properties of brass joints. Mater Trans 49(7):1698–1701CrossRef Xie GM, Ma ZY, Geng L (2008) Effects of friction stir welding parameters on microstructures and mechanical properties of brass joints. Mater Trans 49(7):1698–1701CrossRef
8.
Zurück zum Zitat Cam G, Mistikoglu S, Pakdil M (2009) Microstructural and mechanical characterization of friction stir butt joint welded 63% Cu-37% Zn brass plate. Weld J 88(11):225–232 Cam G, Mistikoglu S, Pakdil M (2009) Microstructural and mechanical characterization of friction stir butt joint welded 63% Cu-37% Zn brass plate. Weld J 88(11):225–232
9.
Zurück zum Zitat Moghaddam MS, Parvizi R, Haddad-Sabzevar M, Davoodi A (2011) Microstructural and mechanical properties of friction stir welded Cu–30Zn brass alloy at various feed speeds: influence of stir bands. Mater Des 32(5):2749–2755CrossRef Moghaddam MS, Parvizi R, Haddad-Sabzevar M, Davoodi A (2011) Microstructural and mechanical properties of friction stir welded Cu–30Zn brass alloy at various feed speeds: influence of stir bands. Mater Des 32(5):2749–2755CrossRef
10.
Zurück zum Zitat Sun YF, Xu N, Fujii H (2014) The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys. Mater Sci Eng, A 589:228–234CrossRef Sun YF, Xu N, Fujii H (2014) The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys. Mater Sci Eng, A 589:228–234CrossRef
11.
Zurück zum Zitat Emamikhah A, Abbasi A, Atefat A, Givi MB (2014) Effect of tool pin profile on friction stir butt welding of high-zinc brass (CuZn40). Int J Adv Manuf Technol 71(1–4):81–90CrossRef Emamikhah A, Abbasi A, Atefat A, Givi MB (2014) Effect of tool pin profile on friction stir butt welding of high-zinc brass (CuZn40). Int J Adv Manuf Technol 71(1–4):81–90CrossRef
12.
Zurück zum Zitat Heidarzadeh A, Saeid T (2016) A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys. Mater Sci Eng, A 649:349–358CrossRef Heidarzadeh A, Saeid T (2016) A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys. Mater Sci Eng, A 649:349–358CrossRef
13.
Zurück zum Zitat Xu N, Ueji R, Fujii H (2014) Enhanced mechanical properties of 70/30 brass joint by rapid cooling friction stir welding. Mater Sci Eng, A 610:132–138CrossRef Xu N, Ueji R, Fujii H (2014) Enhanced mechanical properties of 70/30 brass joint by rapid cooling friction stir welding. Mater Sci Eng, A 610:132–138CrossRef
14.
Zurück zum Zitat Xu N, Ueji R, Fujii H (2015) Enhanced mechanical properties of 70/30 brass joint by multi-pass friction stir welding with rapid cooling. Sci Technol Weld Join 20(2):91–99CrossRef Xu N, Ueji R, Fujii H (2015) Enhanced mechanical properties of 70/30 brass joint by multi-pass friction stir welding with rapid cooling. Sci Technol Weld Join 20(2):91–99CrossRef
15.
Zurück zum Zitat Xie GM, Ma ZY, Geng L (2009) Partial recrystallization in the nugget zone of friction stir welded dual-phase Cu–Zn alloy. Philos Mag 89(18):1505–1516CrossRef Xie GM, Ma ZY, Geng L (2009) Partial recrystallization in the nugget zone of friction stir welded dual-phase Cu–Zn alloy. Philos Mag 89(18):1505–1516CrossRef
16.
Zurück zum Zitat Mironov S, Inagaki K, Sato YS, Kokawa H (2014) Development of grain structure during friction-stir welding of Cu–30Zn brass. Philos Mag 94(27):3137–3148CrossRef Mironov S, Inagaki K, Sato YS, Kokawa H (2014) Development of grain structure during friction-stir welding of Cu–30Zn brass. Philos Mag 94(27):3137–3148CrossRef
17.
Zurück zum Zitat Heidarzadeh A, Saeid T, Klemm V (2016) Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy. Mater Charact 119:84–91CrossRef Heidarzadeh A, Saeid T, Klemm V (2016) Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy. Mater Charact 119:84–91CrossRef
18.
Zurück zum Zitat Fonda RW, Bingert JF, Colligan KJ (2004) Development of grain structure during friction stir welding. Scripta Mater 51(3):243–248CrossRef Fonda RW, Bingert JF, Colligan KJ (2004) Development of grain structure during friction stir welding. Scripta Mater 51(3):243–248CrossRef
19.
Zurück zum Zitat Prangnell PB, Heason CP (2005) Grain structure formation during friction stir welding observed by the ‘stop action technique’. Acta Mater 53(11):3179–3192CrossRef Prangnell PB, Heason CP (2005) Grain structure formation during friction stir welding observed by the ‘stop action technique’. Acta Mater 53(11):3179–3192CrossRef
20.
Zurück zum Zitat Xu N, Ueji R, Fujii H (2016) Dynamic and static change of grain size and texture of copper during friction stir welding. J Mater Process Technol 232:90–99CrossRef Xu N, Ueji R, Fujii H (2016) Dynamic and static change of grain size and texture of copper during friction stir welding. J Mater Process Technol 232:90–99CrossRef
21.
Zurück zum Zitat Morisada Y, Fujii H, Kawahito Y, Nakata K, Tanaka M (2011) Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems. Scripta Mater 65(12):1085–1088CrossRef Morisada Y, Fujii H, Kawahito Y, Nakata K, Tanaka M (2011) Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems. Scripta Mater 65(12):1085–1088CrossRef
22.
Zurück zum Zitat Liu XC, Sun YF, Morisada Y, Fujii H (2018) Dynamics of rotational flow in friction stir welding of aluminium alloys. J Mater Process Technol 252:643–651CrossRef Liu XC, Sun YF, Morisada Y, Fujii H (2018) Dynamics of rotational flow in friction stir welding of aluminium alloys. J Mater Process Technol 252:643–651CrossRef
24.
Zurück zum Zitat Liu X, Wu C, Padhy GK (2015) Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scripta Mater 102:95–98CrossRef Liu X, Wu C, Padhy GK (2015) Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scripta Mater 102:95–98CrossRef
25.
Zurück zum Zitat Liu XC, Wu CS (2015) Material flow in ultrasonic vibration enhanced friction stir welding. J Mater Process Technol 225:32–44CrossRef Liu XC, Wu CS (2015) Material flow in ultrasonic vibration enhanced friction stir welding. J Mater Process Technol 225:32–44CrossRef
26.
Zurück zum Zitat Sharma C, Dwivedi DK, Kumar P (2012) Influence of in-process cooling on tensile behaviour of friction stir welded joints of AA7039. Mater Sci Eng, A 556:479–487CrossRef Sharma C, Dwivedi DK, Kumar P (2012) Influence of in-process cooling on tensile behaviour of friction stir welded joints of AA7039. Mater Sci Eng, A 556:479–487CrossRef
27.
Zurück zum Zitat Fujii H, Chung YD, Sun YF (2013) Friction stir welding of AISI 1080 steel using liquid CO2 for enhanced toughness and ductility. Sci Technol Weld Join 18(6):500–506CrossRef Fujii H, Chung YD, Sun YF (2013) Friction stir welding of AISI 1080 steel using liquid CO2 for enhanced toughness and ductility. Sci Technol Weld Join 18(6):500–506CrossRef
28.
Zurück zum Zitat Liu XC, Sun YF, Fujii H (2017) Clarification of microstructure evolution of aluminum during friction stir welding using liquid CO2 rapid cooling. Mater Des 129:151–163CrossRef Liu XC, Sun YF, Fujii H (2017) Clarification of microstructure evolution of aluminum during friction stir welding using liquid CO2 rapid cooling. Mater Des 129:151–163CrossRef
29.
Zurück zum Zitat Liu XC, Sun YF, Nagira T, Fujii H (2018) Investigation of temperature dependent microstructure evolution of pure iron during friction stir welding using liquid CO2 rapid cooling. Mater Charact 137:24–38CrossRef Liu XC, Sun YF, Nagira T, Fujii H (2018) Investigation of temperature dependent microstructure evolution of pure iron during friction stir welding using liquid CO2 rapid cooling. Mater Charact 137:24–38CrossRef
30.
Zurück zum Zitat Jin Y (2014) Annealing twin formation mechanism. Diss, Ecole Nationale Supérieure des Mines de Paris Jin Y (2014) Annealing twin formation mechanism. Diss, Ecole Nationale Supérieure des Mines de Paris
31.
Zurück zum Zitat Fonda RW, Knipling KE (2011) Texture development in friction stir welds. Sci Technol Weld Join 16(4):288–294CrossRef Fonda RW, Knipling KE (2011) Texture development in friction stir welds. Sci Technol Weld Join 16(4):288–294CrossRef
32.
Zurück zum Zitat Tóth LS, Neale KW, Jonas JJ (1989) Stress response and persistence characteristics of the ideal orientations of shear textures. Acta Metall 37(8):2197–2210CrossRef Tóth LS, Neale KW, Jonas JJ (1989) Stress response and persistence characteristics of the ideal orientations of shear textures. Acta Metall 37(8):2197–2210CrossRef
33.
Zurück zum Zitat Li S, Beyerlein IJ, Bourke MA (2005) Texture formation during equal channel angular extrusion of fcc and bcc materials: comparison with simple shear. Mater Sci Eng, A 394(1):66–77CrossRef Li S, Beyerlein IJ, Bourke MA (2005) Texture formation during equal channel angular extrusion of fcc and bcc materials: comparison with simple shear. Mater Sci Eng, A 394(1):66–77CrossRef
34.
Zurück zum Zitat Kondou R, Ohashi T (2006) Grain boundary accumulation of geometrically necessary dislocations and asymmetric deformations in compatible bicrystals with tilted angle grain boundary under tensile loading. JSME Int J Ser A Solid Mech Mater Eng 49(4):581–588CrossRef Kondou R, Ohashi T (2006) Grain boundary accumulation of geometrically necessary dislocations and asymmetric deformations in compatible bicrystals with tilted angle grain boundary under tensile loading. JSME Int J Ser A Solid Mech Mater Eng 49(4):581–588CrossRef
35.
Zurück zum Zitat Jiang J, Britton TB, Wilkinson AJ (2012) Accumulation of geometrically necessary dislocations near grain boundaries in deformed copper. Philos Mag Lett 92(11):580–588CrossRef Jiang J, Britton TB, Wilkinson AJ (2012) Accumulation of geometrically necessary dislocations near grain boundaries in deformed copper. Philos Mag Lett 92(11):580–588CrossRef
36.
Zurück zum Zitat Hughes DA, Hansen N, Bammann DJ (2003) Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Mater 48(2):147–153CrossRef Hughes DA, Hansen N, Bammann DJ (2003) Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Mater 48(2):147–153CrossRef
37.
Zurück zum Zitat Ponge D, Gottstein G (1998) Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater 46(1):69–80CrossRef Ponge D, Gottstein G (1998) Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater 46(1):69–80CrossRef
38.
Zurück zum Zitat Humphreys FJ, Hatherly M (2012) Recrystallization and related annealing phenomena. Elsevier, Oxford Humphreys FJ, Hatherly M (2012) Recrystallization and related annealing phenomena. Elsevier, Oxford
39.
Zurück zum Zitat Miura H, Sakai T, Mogawa R, Jonas JJ (2007) Nucleation of dynamic recrystallization and variant selection in copper bicrystals. Philos Mag 87(27):4197–4209CrossRef Miura H, Sakai T, Mogawa R, Jonas JJ (2007) Nucleation of dynamic recrystallization and variant selection in copper bicrystals. Philos Mag 87(27):4197–4209CrossRef
40.
Zurück zum Zitat Nemat-Nasser S, Li Y (1998) Flow stress of fcc polycrystals with application to OFHC Cu. Acta Mater 46(2):565–577CrossRef Nemat-Nasser S, Li Y (1998) Flow stress of fcc polycrystals with application to OFHC Cu. Acta Mater 46(2):565–577CrossRef
41.
Zurück zum Zitat Konkova T, Mironov S, Korznikov A, Korznikova G, Myshlyaev MM, Semiatin SL (2015) Grain structure evolution during cryogenic rolling of alpha brass. J Alloys Compd 629:140–147CrossRef Konkova T, Mironov S, Korznikov A, Korznikova G, Myshlyaev MM, Semiatin SL (2015) Grain structure evolution during cryogenic rolling of alpha brass. J Alloys Compd 629:140–147CrossRef
43.
Zurück zum Zitat Hirsch J, Lücke K, Hatherly M (1988) Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline fcc metals—III. The influence of slip inhomogeneities and twinning. Acta Metall 36(11):2905–2927CrossRef Hirsch J, Lücke K, Hatherly M (1988) Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline fcc metals—III. The influence of slip inhomogeneities and twinning. Acta Metall 36(11):2905–2927CrossRef
Metadaten
Titel
Microstructure evolution of Cu–30Zn during friction stir welding
verfasst von
X. C. Liu
Y. F. Sun
T. Nagira
K. Ushioda
H. Fujii
Publikationsdatum
17.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2313-5

Weitere Artikel der Ausgabe 14/2018

Journal of Materials Science 14/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.