Skip to main content
Erschienen in: Journal of Materials Science 17/2018

04.06.2018 | Electronic materials

SWCNT–Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability

verfasst von: Su Jeong Lee, Jong-Woo Kim, Jung Hyuk Park, Yoann Porte, Jin-Hoon Kim, Jin-Woo Park, Sunghee Kim, Jae-Min Myoung

Erschienen in: Journal of Materials Science | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical stability of transparent and stretchable electrode materials is essential for their application in stretchable electronic devices. In this work, single-walled carbon nanotube (SWCNT)–silver nanowire (Ag NW) composite films were developed as electrode materials to improve the thermal stability and anti-electromigration characteristics of transparent stretchable film heaters. By adjusting the mixing ratio of SWCNT–Ag NW suspensions, the mechanical and anti-electromigration properties of SWCNT–Ag NW composite films were systematically investigated. Compared to pristine Ag NW film, the 75:1 SWCNT–Ag NW composite film exhibited an excellent thermal stability, improved anti-electromigration properties, and low sheet resistance of 62.3 Ω/sq with an optical transmittance of 83.4%. Moreover, the same composite film prepared on VHB substrate showed only 23.2% increase in the relative sheet resistance after 1000 times of stretching cycles under the tensile stress. Furthermore, the stretchable film heater with 75:1 SWCNT–Ag NW composite electrode exhibited an improved thermal and mechanical stability even after being exposed to 1000 stretching cycles with a peak strain of 200%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Service RF (2003) Technology. Electronic textiles charge ahead. Science 301:909–911CrossRef Service RF (2003) Technology. Electronic textiles charge ahead. Science 301:909–911CrossRef
2.
Zurück zum Zitat Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6(5):296–301CrossRef Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6(5):296–301CrossRef
3.
Zurück zum Zitat Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, Fan JA, Su Y, Su J, Zhang H, Cheng H, Lu B, Yu C, Chuang C, Kim T, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun PV, Huang Y, Paik U, Rogers J (2013) A stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 4:1543–1548CrossRef Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, Fan JA, Su Y, Su J, Zhang H, Cheng H, Lu B, Yu C, Chuang C, Kim T, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun PV, Huang Y, Paik U, Rogers J (2013) A stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 4:1543–1548CrossRef
4.
Zurück zum Zitat Wang C, Zheng W, Yue Z, Too CO, Wallace GG (2011) Buckled stretchable polypyrrole electrodes for battery applications. Adv Mater 23:3580–3584CrossRef Wang C, Zheng W, Yue Z, Too CO, Wallace GG (2011) Buckled stretchable polypyrrole electrodes for battery applications. Adv Mater 23:3580–3584CrossRef
5.
Zurück zum Zitat Aliev AE, Oh J, Kozlov ME, Kuznetsov AA, Fang S, Fonseca AF, Ovalle R, Lima MD, Haque MH, Gartstein YN, Zhang M, Zakhidov AA, Baughman RH (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1575–1579CrossRef Aliev AE, Oh J, Kozlov ME, Kuznetsov AA, Fang S, Fonseca AF, Ovalle R, Lima MD, Haque MH, Gartstein YN, Zhang M, Zakhidov AA, Baughman RH (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1575–1579CrossRef
6.
Zurück zum Zitat Liang J, Li L, Niu X, Yu Z, Pei Q (2013) Elastomeric polymer light-emitting devices and displays. Nat Photonics 7:817–824CrossRef Liang J, Li L, Niu X, Yu Z, Pei Q (2013) Elastomeric polymer light-emitting devices and displays. Nat Photonics 7:817–824CrossRef
7.
Zurück zum Zitat Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R (2016) Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351:1071–1074CrossRef Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R (2016) Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351:1071–1074CrossRef
8.
Zurück zum Zitat Tasawar H, Sumaira Q, Maria I, Faris A, Ahmed A (2016) Partial slip effect in flow of magnetite-Fe3O4 nanoparticles between rotating stretchable disks. J Magn Magn Mater 413:39–48CrossRef Tasawar H, Sumaira Q, Maria I, Faris A, Ahmed A (2016) Partial slip effect in flow of magnetite-Fe3O4 nanoparticles between rotating stretchable disks. J Magn Magn Mater 413:39–48CrossRef
9.
Zurück zum Zitat Ming Q, Qin S, Guanglei W, Bohan Z, Zhengdong W, Hongjing W (2017) Zinc ferrite composite materials wuth controllable morphology and its applications. Mater Sci Eng B 224:125–138CrossRef Ming Q, Qin S, Guanglei W, Bohan Z, Zhengdong W, Hongjing W (2017) Zinc ferrite composite materials wuth controllable morphology and its applications. Mater Sci Eng B 224:125–138CrossRef
10.
Zurück zum Zitat Shaohua Q, Yinkai Y, Kejun L, Peiyu L, Chenhui Z, Liuding W, Tingting X, Zhengdong W, Hongjing W (2018) Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. J Mater Sci Mater Electron 29:1232CrossRef Shaohua Q, Yinkai Y, Kejun L, Peiyu L, Chenhui Z, Liuding W, Tingting X, Zhengdong W, Hongjing W (2018) Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. J Mater Sci Mater Electron 29:1232CrossRef
11.
Zurück zum Zitat Kamalisarvestani M, Saidur R, Mekhilef S, Javadi FS (2013) Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew Sustain Energy Rev 26:353–364CrossRef Kamalisarvestani M, Saidur R, Mekhilef S, Javadi FS (2013) Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew Sustain Energy Rev 26:353–364CrossRef
12.
Zurück zum Zitat Jo HS, An S, Lee JG, Park HG, Al-Deyab SS, Yarin AL, Yoon SS (2017) Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface. NPG Asia Mater 9(2):e347CrossRef Jo HS, An S, Lee JG, Park HG, Al-Deyab SS, Yarin AL, Yoon SS (2017) Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface. NPG Asia Mater 9(2):e347CrossRef
13.
Zurück zum Zitat Ke S, Chen C, Fu N, Zhou H, Ye M, Lin P, Yuan W, Zeng X, Chen L, Huang H (2016) Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices. ACS Appl Mater Interfaces 8:28406–28411CrossRef Ke S, Chen C, Fu N, Zhou H, Ye M, Lin P, Yuan W, Zeng X, Chen L, Huang H (2016) Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices. ACS Appl Mater Interfaces 8:28406–28411CrossRef
14.
Zurück zum Zitat Ho X, Wei J (2013) Films of carbon nanomaterials for transparent conductors. Materials 6:2155–2181CrossRef Ho X, Wei J (2013) Films of carbon nanomaterials for transparent conductors. Materials 6:2155–2181CrossRef
15.
Zurück zum Zitat Angmo D, Larsen-Olsen TT, Jørgensen M, Søndergaard RR, Krebs FC (2013) Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv Energy Mater 3(2):172–175CrossRef Angmo D, Larsen-Olsen TT, Jørgensen M, Søndergaard RR, Krebs FC (2013) Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv Energy Mater 3(2):172–175CrossRef
16.
Zurück zum Zitat Jung D, Kim D, Lee KH, Overzet LJ, Lee GS (2013) Transparent film heaters using multi-walled carbon nanotube sheets. Sens Actuators A 199:176–180CrossRef Jung D, Kim D, Lee KH, Overzet LJ, Lee GS (2013) Transparent film heaters using multi-walled carbon nanotube sheets. Sens Actuators A 199:176–180CrossRef
17.
Zurück zum Zitat Sui D, Huang Y, Huang L, Liang J, Ma Y, Chen Y (2011) Flexible and transparent electrothermal film heaters based on graphene materials. Small 7:3186–3192CrossRef Sui D, Huang Y, Huang L, Liang J, Ma Y, Chen Y (2011) Flexible and transparent electrothermal film heaters based on graphene materials. Small 7:3186–3192CrossRef
18.
Zurück zum Zitat Liu P, Liu L, Jiang K, Fan S (2011) Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays. Small 7:732–736CrossRef Liu P, Liu L, Jiang K, Fan S (2011) Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays. Small 7:732–736CrossRef
19.
Zurück zum Zitat Kim T, Kim YW, Lee HS, Kim H, Yang WS, Suh KS (2013) Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv Funct Mater 23:1250–1255CrossRef Kim T, Kim YW, Lee HS, Kim H, Yang WS, Suh KS (2013) Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv Funct Mater 23:1250–1255CrossRef
20.
Zurück zum Zitat Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang JL, Guo J, Li WD (2016) High-performance flexible tansparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 12:3021–3030CrossRef Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang JL, Guo J, Li WD (2016) High-performance flexible tansparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 12:3021–3030CrossRef
21.
Zurück zum Zitat Duzyer S, Sinha-ray S, Sinha-ray S, Yarin AL (2017) Transparent conducting electrodes from conducting polymer nanofibers and their application as thin-film heaters. Macromol Mater Eng 302:1700188CrossRef Duzyer S, Sinha-ray S, Sinha-ray S, Yarin AL (2017) Transparent conducting electrodes from conducting polymer nanofibers and their application as thin-film heaters. Macromol Mater Eng 302:1700188CrossRef
22.
Zurück zum Zitat Ko Y, Song SK, Kim NH, Chang ST (2016) Highly transparent and stretchable conductors based on a directional arrangement of silver nanowires by a microliter-scale solution process. Langmuir 32:366–373CrossRef Ko Y, Song SK, Kim NH, Chang ST (2016) Highly transparent and stretchable conductors based on a directional arrangement of silver nanowires by a microliter-scale solution process. Langmuir 32:366–373CrossRef
23.
Zurück zum Zitat Wang J, Yan C, Kang W, Lee PS (2014) High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale 6:10734–10739CrossRef Wang J, Yan C, Kang W, Lee PS (2014) High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale 6:10734–10739CrossRef
24.
Zurück zum Zitat Lagrange M, Sannicolo T, Lohan BG, Khan A, Anikin M, Jiménez C, Bruckert F, Bréchet Y, Bellet D (2017) Understanding the mechanisms leading to failure in metallic nanowire-based transparent heaters, and solution for stability enhancement. Nanotechnology 28:55709CrossRef Lagrange M, Sannicolo T, Lohan BG, Khan A, Anikin M, Jiménez C, Bruckert F, Bréchet Y, Bellet D (2017) Understanding the mechanisms leading to failure in metallic nanowire-based transparent heaters, and solution for stability enhancement. Nanotechnology 28:55709CrossRef
25.
Zurück zum Zitat Khaligh HH, Goldthorpe IA (2013) Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res Lett 8:235CrossRef Khaligh HH, Goldthorpe IA (2013) Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res Lett 8:235CrossRef
26.
Zurück zum Zitat Woo JY, Kim KK, Lee J, Kim JT, Han CS (2014) Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors. Nanotechnology 25:285203CrossRef Woo JY, Kim KK, Lee J, Kim JT, Han CS (2014) Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors. Nanotechnology 25:285203CrossRef
27.
Zurück zum Zitat Stapleton AJ, Yambem SD, Johns AH, Afre RA, Ellis AV, Shapter JG, Andersson GG, Quinton JS, Burn PL, Meredith P, Lewis DA (2015) Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. Sci Technol Adv Mater 16:25002CrossRef Stapleton AJ, Yambem SD, Johns AH, Afre RA, Ellis AV, Shapter JG, Andersson GG, Quinton JS, Burn PL, Meredith P, Lewis DA (2015) Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. Sci Technol Adv Mater 16:25002CrossRef
28.
Zurück zum Zitat Jing M, Han C, Li M, Shen X (2014) High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique. Nanoscale Res Lett 9:588CrossRef Jing M, Han C, Li M, Shen X (2014) High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique. Nanoscale Res Lett 9:588CrossRef
29.
Zurück zum Zitat Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys 4:993–1008CrossRef Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys 4:993–1008CrossRef
30.
Zurück zum Zitat McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687CrossRef McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687CrossRef
31.
Zurück zum Zitat Dumitrescu I, Unwin PR, Macpherson JV (2009) Electrochemistry at carbon nanotubes: perspective and issues. Chem Commun 45:6886–6901CrossRef Dumitrescu I, Unwin PR, Macpherson JV (2009) Electrochemistry at carbon nanotubes: perspective and issues. Chem Commun 45:6886–6901CrossRef
32.
Zurück zum Zitat Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH (2012) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24:3326–3332CrossRef Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH (2012) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24:3326–3332CrossRef
33.
Zurück zum Zitat Naumov AV, Ghosh S, Tsyboulski DA, Bachilo SM, Weisman RB (2011) Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano 5:1639–1648CrossRef Naumov AV, Ghosh S, Tsyboulski DA, Bachilo SM, Weisman RB (2011) Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano 5:1639–1648CrossRef
34.
Zurück zum Zitat Tokuno T, Nogi M, Jiu J, Suganuma K (2012) Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Res Lett 7:281CrossRef Tokuno T, Nogi M, Jiu J, Suganuma K (2012) Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Res Lett 7:281CrossRef
35.
Zurück zum Zitat Woo JS, Han JT, Jung S, Jang JI, Kim HY, Jeong HJ, Jeong SY, Baeg KJ, Lee GW (2014) Electrically robust metal nanowire network formation by in situ interconnection with single-walled carbon nanotubes. Sci Rep 4:4804CrossRef Woo JS, Han JT, Jung S, Jang JI, Kim HY, Jeong HJ, Jeong SY, Baeg KJ, Lee GW (2014) Electrically robust metal nanowire network formation by in situ interconnection with single-walled carbon nanotubes. Sci Rep 4:4804CrossRef
36.
Zurück zum Zitat Krumbein SJ (1988) Metallic electromigration phenomena. IEEE Trans Compon Hybrids Manuf Technol 11:5–15CrossRef Krumbein SJ (1988) Metallic electromigration phenomena. IEEE Trans Compon Hybrids Manuf Technol 11:5–15CrossRef
37.
Zurück zum Zitat Javey A, Kong J (2009) Carbon nanotube electronics. Springer, New York Javey A, Kong J (2009) Carbon nanotube electronics. Springer, New York
38.
Zurück zum Zitat Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire elastomer nanocomposite. ACS Nano 8:5154–5163CrossRef Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire elastomer nanocomposite. ACS Nano 8:5154–5163CrossRef
39.
Zurück zum Zitat Kim BS, Pyo JB, Son JG, Zi G, Lee S, Park JH, Lee J (2017) Biaxial stretchability and transparency of Ag nanowire 2D mass-spring networks prepared by floating compression. ACS Appl Mater Interfaces 9:10865–10873CrossRef Kim BS, Pyo JB, Son JG, Zi G, Lee S, Park JH, Lee J (2017) Biaxial stretchability and transparency of Ag nanowire 2D mass-spring networks prepared by floating compression. ACS Appl Mater Interfaces 9:10865–10873CrossRef
40.
Zurück zum Zitat Zhu Y, Qin Q, Xu F, Fan F, Ding Y, Zhang T, Wiley BJ, Wang ZL (2012) Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B 85:45443CrossRef Zhu Y, Qin Q, Xu F, Fan F, Ding Y, Zhang T, Wiley BJ, Wang ZL (2012) Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B 85:45443CrossRef
41.
Zurück zum Zitat Xu F, Wang X, Zhu Y (2012) Wavy ribbons of carbon nanotubes for stretchable conductors. Adv Funct Mater 22:1279–1283CrossRef Xu F, Wang X, Zhu Y (2012) Wavy ribbons of carbon nanotubes for stretchable conductors. Adv Funct Mater 22:1279–1283CrossRef
42.
Zurück zum Zitat Lee MS, Kim J, Park J, Park JU (2015) Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Res Lett 10:27CrossRef Lee MS, Kim J, Park J, Park JU (2015) Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Res Lett 10:27CrossRef
43.
Zurück zum Zitat Liang J, Li L, Tong K, Ren Z, Hu W, Niu X, Chen Y, Pei Q (2014) Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8:1590–1600CrossRef Liang J, Li L, Tong K, Ren Z, Hu W, Niu X, Chen Y, Pei Q (2014) Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8:1590–1600CrossRef
44.
Zurück zum Zitat Hong S, Lee H, Lee J, Kwon J, Han S, Suh YD, Cho H, Shin J, Yeo J, Ko SH (2015) Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater 27:4744–4751CrossRef Hong S, Lee H, Lee J, Kwon J, Han S, Suh YD, Cho H, Shin J, Yeo J, Ko SH (2015) Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater 27:4744–4751CrossRef
Metadaten
Titel
SWCNT–Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability
verfasst von
Su Jeong Lee
Jong-Woo Kim
Jung Hyuk Park
Yoann Porte
Jin-Hoon Kim
Jin-Woo Park
Sunghee Kim
Jae-Min Myoung
Publikationsdatum
04.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2526-7

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science 17/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.