Skip to main content
Log in

Anthraquinone-functionalized polyurethane designed for polymer electrochromic and electrical memory applications

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel electroactive functional polyurethane PU(IPDI-AQ-EG) with anthraquinone moiety in the backbone is synthesized and characterized. Due to the stable redox behaviors from spectroelectrochemical tests, PU(IPDI-AQ-EG) film is used to prepare electrochromic device with ITO/PU(IPDI-AQ-EG)/gel electrolyte/ITO structure, which shows well-behaved electrochromic properties with obvious color contrast when applied the external potentials from 0 to − 2.0 V. Moreover, electrical memory devices with configuration of ITO/PU(IPDI-AQ-EG)/Al are successfully fabricated via convenient spin-coating process. Current–voltage sweeps between the two electrodes indicate this type of device exhibits typical resistive switching performance with the function of flash memory. The devices can operate at low threshold voltages (write voltage of − 2.7 V and erase voltage of + 2.8 V) with a high ON/OFF current ratio up to 105. The retention time of both conductivity states can be maintained as long as 3000 s without obvious deterioration. It has been demonstrated that the anthraquinone group serving as good electron-withdrawing site in the polymer backbone has a strong influence on the resistive switching characteristics. Preliminary results reveal that the obtain polyurethane PU(IPDI-AQ-EG) is a promising multi-functional material that can be applied in both polymeric electrochromic and memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ling Q-D, Chang F-C, Song Y, Zhu C-X, Liaw D-J, Chan DS-H, Kang E-T, Neoh K-G (2006) Synthesis and dynamic random access memory behavior of a functional polyimide. J Am Chem Soc 128:8732–8733

    Article  Google Scholar 

  2. Ling Q-D, Liaw D-J, Zhu C, Chan DS-H, Kang E-T, Neoh K-G (2008) Polymer electronic memories: materials, devices and mechanisms. Prog Polym Sci 33:917–978

    Article  Google Scholar 

  3. Lin W-P, Liu S-J, Gong T, Zhao Q, Huang W (2014) Polymer-based resistive memory materials and devices. Adv Mater 26:570–606

    Article  Google Scholar 

  4. Liu C-L, Chen W-C (2011) Donor–acceptor polymers for advanced memory device applications. Polym Chem 2:2169

    Article  Google Scholar 

  5. Li YQ, Fang RC, Zheng AM, Chu YY, Tao X, Xu HH, Ding SJ, Shen YZ (2011) Nonvolatile memory devices based on polyimides bearing noncoplanar twisted biphenyl units containing carbazole and triphenylamine side-chain groups. J Mater Chem 21:15643–15654

    Article  Google Scholar 

  6. Li Y, Xu H, Tao X, Qian K, Fu S, Shen Y, Ding S (2011) Synthesis and memory characteristics of highly organo-soluble polyimides bearing a noncoplanar twisted biphenyl unit containing aromatic side-chain groups. J Mater Chem 21:1810–1821

    Article  Google Scholar 

  7. Li Y, Chu Y, Fang R, Ding S, Wang Y, Shen Y, Zheng A (2012) Synthesis and memory characteristics of polyimides containing noncoplanar aryl pendant groups. Polymer 53:229–240

    Article  Google Scholar 

  8. Kumar R, Pillai RG, Pekas N, Wu Y, McCreery RL (2012) Spatially resolved Raman spectroelectrochemistry of solid-state polythiophene/viologen memory devices. J Am Chem Soc 134:14869–14876

    Article  Google Scholar 

  9. Li Y, Song Y, Zhang X, Wu X, Wang F, Wang Z (2015) Programmable polymer memory device based on hydrophilic polythiophene and poly(ionic liquid) electrolyte. Macromol Chem Phys 216:113–121

    Article  Google Scholar 

  10. Ling Q-D, Song Y, Lim S-L, Teo EY-H, Tan Y-P, Zhu C, Chan DSH, Kwong D-L, Kang E-T, Neoh K-G (2006) A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. Angew Chem Int Ed 45:2947–2951

    Article  Google Scholar 

  11. Zhuang X-D, Chen Y, Liu G, Li P-P, Zhu C-X, Kang E-T, Noeh K-G, Zhang B, Zhu J-H, Li Y-X (2010) Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Adv Mater 22:1731–1735

    Article  Google Scholar 

  12. Ouyang J, Chu C-W, Szmanda CR, Ma L, Yang Y (2004) Programmable polymer thin film and non-volatile memory device. Nat Mater 3:918–922

    Article  Google Scholar 

  13. Chu CW, Ouyang J, Tseng HH, Yang Y (2005) Organic donor–acceptor system exhibiting electrical bistability for use in memory devices. Adv Mater 17:1440–1443

    Article  Google Scholar 

  14. Ling Q, Liaw D, Zhu C, Chan D, Kang E, Neoh K (2008) Polymer electronic memories: materials, devices and mechanisms. Prog Polym Sci 33:917–978

    Article  Google Scholar 

  15. Li Y, Fang R, Ding S, Shen Y (2011) Rewritable and non-volatile memory effects based on polyimides containing pendant carbazole and triphenylamine groups. Macromol Chem Phys 212:2360–2370

    Article  Google Scholar 

  16. Kurosawa T, Higashihara T, Ueda M (2013) Polyimide memory: a pithy guideline for future applications. Polym Chem 4:16–30

    Article  Google Scholar 

  17. Park S, Kim K, Kim JC, Kwon W, Kim DM, Ree M (2011) Synthesis and nonvolatile memory characteristics of thermally, dimensionally and chemically stable polyimides. Polymer 52:2170–2179

    Article  Google Scholar 

  18. Lee TJ, Ko Y-G, Yen H-J, Kim K, Kim DM, Kwon W, Hahm SG, Liou G-S, Ree M (2012) Programmable digital nonvolatile memory behaviors of donor–acceptor polyimides bearing triphenylamine derivatives: effects of substituents. Polym Chem 3:1276–1283

    Article  Google Scholar 

  19. Hu Y-C, Chen C-J, Yen H-J, Lin K-Y, Yeh J-M, Chen W-C, Liou G-S (2012) Novel triphenylamine-containing ambipolar polyimides with pendant anthraquinone moiety for polymeric memory device, electrochromic and gas separation applications. J Mater Chem 22:20394–20402

    Article  Google Scholar 

  20. Zhang Y, Zhuang H, Yang Y, Xu X, Bao Q, Li N, Li H, Xu Q, Lu J, Wang L (2012) Thermally stable ternary data-storage device based on twisted anthraquinone molecular design. J Phys Chem C 116:22832–22839

    Article  Google Scholar 

  21. Wu J-H, Yen H-J, Hu Y-C, Liou G-S (2014) Side-chain and linkage-mediated effects of anthraquinone moieties on ambipolar poly(triphenylamine)-based volatile polymeric memory devices. Chem Commun 50:4915–4917

    Article  Google Scholar 

  22. van Dijk EH, Myles DJT, van der Veen MH, Hummelen JC (2006) Synthesis and properties of an anthraquinone-based redox switch for molecular electronics. Org Lett 8:2333–2336

    Article  Google Scholar 

  23. Hsiao S-H, Lin J-Y (2015) Synthesis and electrochromic properties of novel aromatic fluorinated poly(ether-imide)s bearing anthraquinone units. J Fluor Chem 178:115–130

    Article  Google Scholar 

  24. Zheng Y, Zheng J, Dou L, Qiao W, Wan X (2009) Synthesis and characterization of a novel kind of near-infrared electrochromic polymers containing an anthraquinone imide group and ionic moieties. J Mater Chem 19:8470–8477

    Article  Google Scholar 

  25. Cabanlit M, Maitland D, Wilson T, Simon S, Wun T, Gershwin ME, Van de Water J (2007) Polyurethane shape-memory polymers demonstrate functional biocompatibility in vitro. Macromol Biosci 7:48–55

    Article  Google Scholar 

  26. Sun Y, Li L, Wen D, Bai X (2015) Bistable electrical switching characteristics and memory effect by mixing of oxadiazole in polyurethane layer. J Phys Chem C 119:19520–19525

    Article  Google Scholar 

  27. Qiu F, Wang Q, Yang D, Cao G, Guan Y, Zhuang L (2013) Preparation of azo waveguide polyurethane and its analysis of Y-branch and Mach–Zehnder optical switches. Eur Polym J 49:2247–2256

    Article  Google Scholar 

  28. Lim SL, Li N-J, Lu J-M, Ling Q-D, Zhu CX, Kang E-T, Neoh KG (2009) conductivity switching and electronic memory effect in polymers with pendant azobenzene chromophores. ACS Appl Mater Interfaces 1:60–71

    Article  Google Scholar 

  29. Wang L-D, Tang J, Li R-Z, Zhang T, Tong L, Tang J (2016) Synthesis and characterization of cross-linkable polyurethane-imide electro-optic waveguide polymer. Appl Phys A 122:38

    Article  Google Scholar 

  30. Sun Y, Miao F, Li R (2015) Bistable electrical switching and nonvolatile memory effect based on the thin films of polyurethane-carbon nanotubes blends. Sens Actuators A 234:282–289

    Article  Google Scholar 

  31. Meng Q, Huang D, Wei S, Chen L (2002) Synthesis and application of polymeric dyes containing the anthraquinone structure. J Appl Polym Sci 83:1252–1257

    Article  Google Scholar 

  32. John JV, Uthaman S, Augustine R, Chen H, Park I-K, Kim I (2017) pH/redox dual stimuli-responsive sheddable nanodaisies for efficient intracellular tumour-triggered drug delivery. J Mater Chem B 5:5027–5036

    Article  Google Scholar 

  33. Thelakkat M (2002) Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol Mater Eng 287:442–461

    Article  Google Scholar 

  34. Wang LL, Dong X, Liu XG, Xing Q, Huang MM, Hu HQ, Wang DJ (2013) Microstructure and rheological properties of thermoplastic polyurethane and its composites. Acta Polym Sin 3:367–376

    Google Scholar 

  35. Li RM, Yu W, Zhou CX (2007) Investigation of phase separation in a partially miscible polymer blend by rheology. J Macromol Sci B Phys 46:1051–1062

    Article  Google Scholar 

  36. Mao H, Yang F, Wang C, Wang Y, Yao D, Yin Y (2015) Anthraquinone chromophore covalently bonded blocked waterborne polyurethanes: synthesis and application. RSC Adv 5:30631–30639

    Article  Google Scholar 

  37. Song Y, Yao H, Tan H, Zhu S, Dong B, Guan S (2017) Changing the memory behaviors from volatile to nonvolatile via end-capping of hyperbranched polyimides with polycyclic arenes. Dyes Pigments 139:730–736

    Article  Google Scholar 

  38. Zhao Z, Yin Z, Chen H, Zheng L, Zhu C, Zhang L, Tan S, Wang H, Guo Y, Tang Q, Liu Y (2017) High-performance, air-stable field-effect transistors based on heteroatom-substituted naphthalenediimide–benzothiadiazole copolymers exhibiting ultrahigh electron mobility up to 8.5 cm V−1 s−1. Adv Mater 29:1602410

    Article  Google Scholar 

  39. Zhou X, Fang C, Lei W, Du J, Huang T, Li Y, Cheng Y (2016) Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water. Sci Rep 6:34574

    Article  Google Scholar 

  40. Fernández-d’Arlas B, Ramos JA, Saralegi A, Corcuera M, Mondragon I, Eceiza A (2012) Molecular engineering of elastic and strong supertough polyurethanes. Macromolecules 45:3436–3443

    Article  Google Scholar 

  41. Wang M, Li Z, Li H, He J, Li N, Xu Q, Lu J (2017) Different steric-twist-induced ternary memory characteristics in nonconjugated copolymers with pendant naphthalene and 1,8-naphthalimide moieties. Chem Asian J 12:2744–2748

    Article  Google Scholar 

  42. Liou G-S, Hsiao S-H, Su T-H (2005) Synthesis, luminescence and electrochromism of aromatic poly(amine-amide)s with pendent triphenylamine moieties. J Mater Chem 15:1812–1820

    Article  Google Scholar 

  43. Frenkel J (1938) On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys Rev 54:647–648

    Article  Google Scholar 

  44. Laurent C, Kay E, Souag N (1988) dielectric breakdown of polymer films containing metal clusters. J Appl Phys 64:336–343

    Article  Google Scholar 

  45. Li L, Ling Q-D, Lim S-L, Tan Y-P, Zhu C, Chan DSH, Kang E-T, Neoh K-G (2007) A flexible polymer memory device. Org Electron 8:401–406

    Article  Google Scholar 

  46. Mark P, Helfrich W (1962) J Appl Phys 33:205–215

    Article  Google Scholar 

  47. Campbell AJ, Bradley DDC, Lidzey DG (1997) Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes. J Appl Phys 82:6326–6342

    Article  Google Scholar 

  48. Jensen KL (2003) Electron emission theory and its application: Fowler–Nordheim equation and beyond. J Vac Sci Technol B 21:1528–1544

    Article  Google Scholar 

  49. Ling Q-D, Wang W, Song Y, Zhu C-X, Chan DS-H, Kang E-T, Neoh K-G (2006) Bistable electrical switching and memory effects in a thin film of copolymer containing electron donor–acceptor moieties and europium complexes. J Phys Chem B 110:23995–24001

    Article  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  51. Lee W-Y, Kurosawa T, Lin S-T, Higashihara T, Ueda M, Chen W-C (2011) New donor–acceptor oligoimides for high-performance nonvolatile memory devices. Chem Mater 23:4487–4497

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51303084) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), as well as the facilities support from Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, M., Yang, Z. et al. Anthraquinone-functionalized polyurethane designed for polymer electrochromic and electrical memory applications. J Mater Sci 53, 15600–15613 (2018). https://doi.org/10.1007/s10853-018-2732-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2732-3

Keywords

Navigation