Skip to main content
Erschienen in: Journal of Materials Science 6/2019

26.11.2018 | Chemical routes to materials

Mechanochemical reaction using weak acid salts enables dispersion and exfoliation of nanomaterials in polar solvents

verfasst von: Yoshihiko Arao, Jonathon Tanks, Kojiro Aida, Masatoshi Kubouchi

Erschienen in: Journal of Materials Science | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanomaterials, such as carbon nanotubes, graphene, and various types of nanosheets, form aggregates in dry powder due to attractive van der Walls forces. To bring out their unique properties, dispersion of the nanomaterial in solid or liquid is essential. However, the dispersion media for these materials are limited; the surface tension of liquid should be as close as possible to that of the nanomaterial. This limitation restricts the effective usage of nanomaterials. Here, we find that nanomaterials are easily dispersed or exfoliated in water and low-boiling point solvents after simple pretreatment. Pulverization of nanomaterials induces many dangling bonds at the newly created edge, and these active species react with weak acid salts. In polar solvent, the bonded salts are dissociated and enhance the negative charging of nanomaterials. The enhanced electric charging prevents the aggregation or restacking of nanosheets even in typically incompatible solvent such as water and alcohol. The functionalized powder can be easily exfoliated, giving more than 20% yield of nanosheets after only 5 min of sonication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef
2.
Zurück zum Zitat Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquid. Nat Mater 13:624–630CrossRef Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquid. Nat Mater 13:624–630CrossRef
3.
Zurück zum Zitat Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265CrossRef Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265CrossRef
4.
Zurück zum Zitat Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1226419CrossRef Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1226419CrossRef
5.
Zurück zum Zitat Rao CNR, Gopalakrishnan K, Maitra U (2015) Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl Mater Interfaces 7:7809–7832CrossRef Rao CNR, Gopalakrishnan K, Maitra U (2015) Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl Mater Interfaces 7:7809–7832CrossRef
6.
Zurück zum Zitat Ferrari AC, Bonaccorso F, Fal’ko V, Novoselov KS, Roche S, Bøggild P et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598–4810CrossRef Ferrari AC, Bonaccorso F, Fal’ko V, Novoselov KS, Roche S, Bøggild P et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598–4810CrossRef
7.
Zurück zum Zitat Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
8.
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef
9.
Zurück zum Zitat Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295CrossRef Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295CrossRef
10.
Zurück zum Zitat Wang T, Quinn MDJ, Notley SM (2018) Enhanced electrical, mechanical and thermal properties by exfoliating graphene platelets of larger lateral dimensions. Carbon 129:191–198CrossRef Wang T, Quinn MDJ, Notley SM (2018) Enhanced electrical, mechanical and thermal properties by exfoliating graphene platelets of larger lateral dimensions. Carbon 129:191–198CrossRef
11.
Zurück zum Zitat Grayfer ED, Kozlova MN, Fedorov VE (2017) Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv Colloid Interface Sci 245:40–61CrossRef Grayfer ED, Kozlova MN, Fedorov VE (2017) Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv Colloid Interface Sci 245:40–61CrossRef
12.
Zurück zum Zitat Tao H, Zhang Y, Gao Y, Sun Z, Yan C, Texter J (2017) Scalable exfoliation and dispersion of two-dimensional materials—an update. Phys Chem Chem Phys 19:921–960CrossRef Tao H, Zhang Y, Gao Y, Sun Z, Yan C, Texter J (2017) Scalable exfoliation and dispersion of two-dimensional materials—an update. Phys Chem Chem Phys 19:921–960CrossRef
13.
Zurück zum Zitat Jawaid A, Nepal D, Park K, Jesperson M, Qualley A, Mirau P et al (2016) Mechanism for liquid phase exfoliation of MoS2. Chem Mater 28:337–348CrossRef Jawaid A, Nepal D, Park K, Jesperson M, Qualley A, Mirau P et al (2016) Mechanism for liquid phase exfoliation of MoS2. Chem Mater 28:337–348CrossRef
14.
Zurück zum Zitat Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22CrossRef Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22CrossRef
15.
Zurück zum Zitat Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A et al (2016) Sensitive electromechanical sensors using viscoelastic graphene–polymer nanocomposites. Science 354:1257–1260CrossRef Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A et al (2016) Sensitive electromechanical sensors using viscoelastic graphene–polymer nanocomposites. Science 354:1257–1260CrossRef
16.
Zurück zum Zitat Kelly AG, Hallam T, Backes C, Harvey A, Esmaeily SS, Godwin I et al (2017) All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356:69–73CrossRef Kelly AG, Hallam T, Backes C, Harvey A, Esmaeily SS, Godwin I et al (2017) All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356:69–73CrossRef
17.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
18.
Zurück zum Zitat Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
19.
Zurück zum Zitat Posudievsky OY, Khazieieva OA, Cherepanov VV, Dovbeshko GI, Koshechko VG, Pokhodenko VD (2016) Efficient dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk hexagonal boron nitride. RSC Adv 6:47112–47119CrossRef Posudievsky OY, Khazieieva OA, Cherepanov VV, Dovbeshko GI, Koshechko VG, Pokhodenko VD (2016) Efficient dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk hexagonal boron nitride. RSC Adv 6:47112–47119CrossRef
20.
Zurück zum Zitat Posudievsky OY, Khazieieva OA, Cherepanov VV, Koshechko VG, Pokhodenko VD (2013) High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite. J Nanopart Res 15:2046CrossRef Posudievsky OY, Khazieieva OA, Cherepanov VV, Koshechko VG, Pokhodenko VD (2013) High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite. J Nanopart Res 15:2046CrossRef
21.
Zurück zum Zitat Pentecost A, Four S, Mochalin V, Knoke I, Gogotsi Y (2010) Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl Mater Interfaces 2:3289–3294CrossRef Pentecost A, Four S, Mochalin V, Knoke I, Gogotsi Y (2010) Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl Mater Interfaces 2:3289–3294CrossRef
22.
Zurück zum Zitat Iwashita N, Park CR, Fujimoto H, Shiraishi M, Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42:701–714CrossRef Iwashita N, Park CR, Fujimoto H, Shiraishi M, Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42:701–714CrossRef
23.
Zurück zum Zitat Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X et al (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091CrossRef Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X et al (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091CrossRef
24.
Zurück zum Zitat Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539CrossRef Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539CrossRef
25.
Zurück zum Zitat Jeon IY, Bae SY, Seo JM, Baek JM (2015) Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling. Adv Funct Mater 25:6961–6975CrossRef Jeon IY, Bae SY, Seo JM, Baek JM (2015) Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling. Adv Funct Mater 25:6961–6975CrossRef
26.
Zurück zum Zitat Liu WW, Wang JN, Wang XX (2012) Charging of unfunctionalized graphene in organic solvents. Nanoscale 4:425–428CrossRef Liu WW, Wang JN, Wang XX (2012) Charging of unfunctionalized graphene in organic solvents. Nanoscale 4:425–428CrossRef
27.
Zurück zum Zitat Halim U, Zheng CR, Chen Y, Lin Z, Jiang S, Cheng R et al (2013) A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction. Nat Commun 13:3213 Halim U, Zheng CR, Chen Y, Lin Z, Jiang S, Cheng R et al (2013) A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction. Nat Commun 13:3213
28.
Zurück zum Zitat Shen J, He Y, Wu J, Gao C, Keyshar K, Zhang X et al (2015) Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett 15:5449–5454CrossRef Shen J, He Y, Wu J, Gao C, Keyshar K, Zhang X et al (2015) Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett 15:5449–5454CrossRef
29.
Zurück zum Zitat AraoY Mori F, Kubouchi M (2017) Efficient solvent systems for improving production of few-layer graphene in liquid phase exfoliation. Carbon 118:18–24CrossRef AraoY Mori F, Kubouchi M (2017) Efficient solvent systems for improving production of few-layer graphene in liquid phase exfoliation. Carbon 118:18–24CrossRef
30.
Zurück zum Zitat Khan U, Porwal H, O’Neill A, Nawaz K, May P, Coleman JN (2011) Solvent-exfoliated graphene at extremely high concentration. Langmuir 27:9077–9082CrossRef Khan U, Porwal H, O’Neill A, Nawaz K, May P, Coleman JN (2011) Solvent-exfoliated graphene at extremely high concentration. Langmuir 27:9077–9082CrossRef
31.
Zurück zum Zitat Arao Y, Kubouchi M (2015) High-rate production of few-layer graphene by high-power probe sonication. Carbon 95:802–808CrossRef Arao Y, Kubouchi M (2015) High-rate production of few-layer graphene by high-power probe sonication. Carbon 95:802–808CrossRef
32.
Zurück zum Zitat Varrla E, Backes C, Paton KR, Harvey A, Gholamvand Z, McCauley J et al (2015) Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem Mater 27:1129–1139CrossRef Varrla E, Backes C, Paton KR, Harvey A, Gholamvand Z, McCauley J et al (2015) Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem Mater 27:1129–1139CrossRef
33.
Zurück zum Zitat Fan X, Xu P, Li YC, Zhou D, Sun Y, Nguyen MAT et al (2016) Controlled exfoliation of MoS2 crystals into trilayer nanosheets. J Am Chem Soc 138:5143–5149CrossRef Fan X, Xu P, Li YC, Zhou D, Sun Y, Nguyen MAT et al (2016) Controlled exfoliation of MoS2 crystals into trilayer nanosheets. J Am Chem Soc 138:5143–5149CrossRef
34.
Zurück zum Zitat Bonaccorso F, Bartolotta A, Coleman JN, Backes C (2016) 2D-crystal based functional inks. Adv Mater 28:6136–6166CrossRef Bonaccorso F, Bartolotta A, Coleman JN, Backes C (2016) 2D-crystal based functional inks. Adv Mater 28:6136–6166CrossRef
35.
Zurück zum Zitat Van Der Hoeven PhC, Lyklema J (1992) Electrostatic stabilization in non-aqueous media. Adv Colloid Interface Sci 42:205–277CrossRef Van Der Hoeven PhC, Lyklema J (1992) Electrostatic stabilization in non-aqueous media. Adv Colloid Interface Sci 42:205–277CrossRef
Metadaten
Titel
Mechanochemical reaction using weak acid salts enables dispersion and exfoliation of nanomaterials in polar solvents
verfasst von
Yoshihiko Arao
Jonathon Tanks
Kojiro Aida
Masatoshi Kubouchi
Publikationsdatum
26.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3156-9

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Science 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.