Skip to main content
Erschienen in: Journal of Materials Science 19/2019

01.07.2019 | Electronic materials

Efficient silicon solar cells applying cuprous sulfide as hole-selective contact

verfasst von: Lei Jin, Lun Cai, Danmin Chen, Wenxian Wang, Hui Shen, Fuqin Zhang

Erschienen in: Journal of Materials Science | Ausgabe 19/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The introduction of dopant-free materials used for carrier-selective contact effectively overcomes the issue of high surface recombination velocity at aluminum back surface field. Additionally, dopant-free materials have the advantages of low fabrication temperature, simple process and considerably high efficiency. In this contribution, cuprous sulfide (Cu2S), fabricated by thermal evaporation, is applied as hole-selective contact material at rear-surface region of crystalline silicon (c-Si) solar cells for the first time. The band alignment of Cu2S/p-Si exhibits only a small valence band offset and huge conduction band offset being excellent hole-selective and electron blocking properties. By inserting Cu2S layer between p-Si and Ag, a lower contact resistivity of 27.2 mΩ cm2 is achieved. As a result, the introduction with 4-nm Cu2S interlayer significantly improves device efficiency to over 21%, affording a 1.2% absolute increase from the control cell. Metal sulfides introduced herein exhibit remarkable properties for carrier-selective contacts, compared to conventional metal nitrides and oxides.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189CrossRef Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189CrossRef
2.
Zurück zum Zitat Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576CrossRef Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576CrossRef
3.
Zurück zum Zitat Yoshikawa K, Kawasaki H, Yoshida W et al (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:17032CrossRef Yoshikawa K, Kawasaki H, Yoshida W et al (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:17032CrossRef
4.
Zurück zum Zitat Bullock J, Hettick M, Geissbühler J et al (2016) Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat Energy 1:15031CrossRef Bullock J, Hettick M, Geissbühler J et al (2016) Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat Energy 1:15031CrossRef
5.
Zurück zum Zitat Battaglia C, Yin X, Zheng M et al (2014) Hole selective MoOx contact for silicon solar cells. Nano Lett 14:967–971CrossRef Battaglia C, Yin X, Zheng M et al (2014) Hole selective MoOx contact for silicon solar cells. Nano Lett 14:967–971CrossRef
6.
Zurück zum Zitat Bullock J, Cuevas A, Allen T, Battaglia C (2014) Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl Phys Lett 105:232109CrossRef Bullock J, Cuevas A, Allen T, Battaglia C (2014) Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl Phys Lett 105:232109CrossRef
7.
Zurück zum Zitat Bullock J, Zheng P, Jeangros Q et al (2016) Lithium fluoride based electron contacts for high efficiency n-type crystalline silicon solar cells. Adv Energy Mater 6:1600241CrossRef Bullock J, Zheng P, Jeangros Q et al (2016) Lithium fluoride based electron contacts for high efficiency n-type crystalline silicon solar cells. Adv Energy Mater 6:1600241CrossRef
8.
Zurück zum Zitat Yang X, Aydin E, Xu H et al (2018) Tantalum nitride electron-selective contact for crystalline silicon solar cells. Adv Energy Mater 8:1800608CrossRef Yang X, Aydin E, Xu H et al (2018) Tantalum nitride electron-selective contact for crystalline silicon solar cells. Adv Energy Mater 8:1800608CrossRef
9.
Zurück zum Zitat Geissbühler J, Werner J, Martin de Nicolas S et al (2015) 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl Phys Lett 107:081601CrossRef Geissbühler J, Werner J, Martin de Nicolas S et al (2015) 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl Phys Lett 107:081601CrossRef
10.
Zurück zum Zitat Glunz SW, Feldmann F (2018) SiO2 surface passivation layers—a key technology for silicon solar cells. Sol Energy Mater Sol Cells 185:260–269CrossRef Glunz SW, Feldmann F (2018) SiO2 surface passivation layers—a key technology for silicon solar cells. Sol Energy Mater Sol Cells 185:260–269CrossRef
11.
Zurück zum Zitat Quan C, Tong H, Yang Z et al (2018) Electron-selective scandium-tunnel oxide passivated contact for n-type silicon solar cells. Solar RRL 2:1800071CrossRef Quan C, Tong H, Yang Z et al (2018) Electron-selective scandium-tunnel oxide passivated contact for n-type silicon solar cells. Solar RRL 2:1800071CrossRef
12.
Zurück zum Zitat Wan Y, Karuturi SK, Samundsett C et al (2017) Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction. ACS Energy Lett 3:125–131CrossRef Wan Y, Karuturi SK, Samundsett C et al (2017) Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction. ACS Energy Lett 3:125–131CrossRef
13.
Zurück zum Zitat Melskens J, van de Loo BWH, Macco B, Black LE, Smit S, Kessels WMM (2018) Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects. IEEE J Photovolt 8:373–388CrossRef Melskens J, van de Loo BWH, Macco B, Black LE, Smit S, Kessels WMM (2018) Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects. IEEE J Photovolt 8:373–388CrossRef
14.
Zurück zum Zitat Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz SW (2014) Efficient carrier-selective p- and n-contacts for Si solar cells. Sol Energy Mater Sol Cells 131:100–104CrossRef Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz SW (2014) Efficient carrier-selective p- and n-contacts for Si solar cells. Sol Energy Mater Sol Cells 131:100–104CrossRef
15.
Zurück zum Zitat Yang X, Zheng P, Bi Q, Weber K (2016) Silicon heterojunction solar cells with electron selective TiOx contact. Sol Energy Mater Sol Cells 150:32–38CrossRef Yang X, Zheng P, Bi Q, Weber K (2016) Silicon heterojunction solar cells with electron selective TiOx contact. Sol Energy Mater Sol Cells 150:32–38CrossRef
17.
Zurück zum Zitat Wan Y, Samundsett C, Bullock J et al (2016) Magnesium fluoride electron-selective contacts for crystalline silicon solar cells. ACS Appl Mater Interfaces 8:14671–14677CrossRef Wan Y, Samundsett C, Bullock J et al (2016) Magnesium fluoride electron-selective contacts for crystalline silicon solar cells. ACS Appl Mater Interfaces 8:14671–14677CrossRef
18.
Zurück zum Zitat Allen TG, Bullock J, Zheng P et al (2017) Calcium contacts to n-type crystalline silicon solar cells. Prog Photovolt Res Appl 25:636–644CrossRef Allen TG, Bullock J, Zheng P et al (2017) Calcium contacts to n-type crystalline silicon solar cells. Prog Photovolt Res Appl 25:636–644CrossRef
19.
Zurück zum Zitat Allen TG, Bullock J, Jeangros Q et al (2017) A low resistance calcium/reduced titania passivated contact for high efficiency crystalline silicon solar cells. Adv Energy Mater 7:1602606CrossRef Allen TG, Bullock J, Jeangros Q et al (2017) A low resistance calcium/reduced titania passivated contact for high efficiency crystalline silicon solar cells. Adv Energy Mater 7:1602606CrossRef
20.
Zurück zum Zitat Feldmann F, Ritzau K-U, Bivour M et al (2015) High and low work function materials for passivated contacts. Energy Proc 77:263–270CrossRef Feldmann F, Ritzau K-U, Bivour M et al (2015) High and low work function materials for passivated contacts. Energy Proc 77:263–270CrossRef
21.
Zurück zum Zitat Lin W, Wu W, Liu Z et al (2018) Chromium trioxide hole-selective heterocontacts for silicon solar cells. ACS Appl Mater Interfaces 10:13645–13651CrossRef Lin W, Wu W, Liu Z et al (2018) Chromium trioxide hole-selective heterocontacts for silicon solar cells. ACS Appl Mater Interfaces 10:13645–13651CrossRef
22.
Zurück zum Zitat Bivour M, Temmler J, Steinkemper H, Hermle M (2015) Molybdenum and tungsten oxide: high work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol Energy Mater Sol Cells 142:34–41CrossRef Bivour M, Temmler J, Steinkemper H, Hermle M (2015) Molybdenum and tungsten oxide: high work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol Energy Mater Sol Cells 142:34–41CrossRef
23.
Zurück zum Zitat Tong J, Wan Y, Cui J, Lim S, Song N, Lennon A (2017) Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells. Appl Surf Sci 423:139–146CrossRef Tong J, Wan Y, Cui J, Lim S, Song N, Lennon A (2017) Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells. Appl Surf Sci 423:139–146CrossRef
24.
Zurück zum Zitat Zhang X, Wan Y, Bullock J, Allen T, Cuevas A (2016) Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films. Appl Phys Lett 109:052102CrossRef Zhang X, Wan Y, Bullock J, Allen T, Cuevas A (2016) Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films. Appl Phys Lett 109:052102CrossRef
25.
Zurück zum Zitat Gao P, Yang Z, He J et al (2018) Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives. Adv Sci 5:1700547CrossRef Gao P, Yang Z, He J et al (2018) Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives. Adv Sci 5:1700547CrossRef
26.
Zurück zum Zitat Lin W, Wu W, Xie Q et al (2018) Conductive cuprous iodide hole-selective contacts with thermal and ambient stability for silicon solar cells. ACS Appl Mater Interfaces 10:43699–43706CrossRef Lin W, Wu W, Xie Q et al (2018) Conductive cuprous iodide hole-selective contacts with thermal and ambient stability for silicon solar cells. ACS Appl Mater Interfaces 10:43699–43706CrossRef
28.
Zurück zum Zitat Parreira P, Lavareda G, Amaral A et al (2011) Transparent p-type CuxS thin films. J Alloys Compd 509:5099–5104CrossRef Parreira P, Lavareda G, Amaral A et al (2011) Transparent p-type CuxS thin films. J Alloys Compd 509:5099–5104CrossRef
30.
Zurück zum Zitat Martinson ABF, Riha SC, Thimsen E, Elam JW, Pellin MJ (2013) Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition. Energy Environ Sci 6:1868CrossRef Martinson ABF, Riha SC, Thimsen E, Elam JW, Pellin MJ (2013) Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition. Energy Environ Sci 6:1868CrossRef
31.
Zurück zum Zitat Zhang Y, Wang Y, Xi L et al (2014) Electronic structure of antifluorite Cu2x (X = S, Se, Te) within the modified Becke–Johnson potential plus an on-site Coulomb U. J Chem Phys 140:074702CrossRef Zhang Y, Wang Y, Xi L et al (2014) Electronic structure of antifluorite Cu2x (X = S, Se, Te) within the modified Becke–Johnson potential plus an on-site Coulomb U. J Chem Phys 140:074702CrossRef
32.
Zurück zum Zitat Riha SC, Jin S, Baryshev SV, Thimsen E, Wiederrecht GP, Martinson AB (2013) Stabilizing Cu2S for photovoltaics one atomic layer at a time. ACS Appl Mater Interfaces 5:10302–10309CrossRef Riha SC, Jin S, Baryshev SV, Thimsen E, Wiederrecht GP, Martinson AB (2013) Stabilizing Cu2S for photovoltaics one atomic layer at a time. ACS Appl Mater Interfaces 5:10302–10309CrossRef
33.
Zurück zum Zitat Jiang Y, Zhang X, Ge QQ et al (2014) Engineering the interfaces of ITO@Cu2S nanowire arrays toward efficient and stable counter electrodes for quantum-dot-sensitized solar cells. ACS Appl Mater Interfaces 6:15448–15455CrossRef Jiang Y, Zhang X, Ge QQ et al (2014) Engineering the interfaces of ITO@Cu2S nanowire arrays toward efficient and stable counter electrodes for quantum-dot-sensitized solar cells. ACS Appl Mater Interfaces 6:15448–15455CrossRef
34.
Zurück zum Zitat Fu H (2018) Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. J Mater Chem C 6:414–445CrossRef Fu H (2018) Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. J Mater Chem C 6:414–445CrossRef
35.
Zurück zum Zitat Sharma R, Cai G, Shinde DV et al (2014) Polyelectrolyte multilayer-assisted fabrication of p-Cu2S/n-CdS heterostructured thin-film phototransistors. J Mater Chem C 2:8012–8017CrossRef Sharma R, Cai G, Shinde DV et al (2014) Polyelectrolyte multilayer-assisted fabrication of p-Cu2S/n-CdS heterostructured thin-film phototransistors. J Mater Chem C 2:8012–8017CrossRef
36.
Zurück zum Zitat Zhang C, Tao J, Chu J (2018) An 8.7% efficiency co-electrodeposited Cu2ZnSnS4 photovoltaic device fabricated via a pressurized post-sulfurization process. J Mater Chem C 6:13275–13282CrossRef Zhang C, Tao J, Chu J (2018) An 8.7% efficiency co-electrodeposited Cu2ZnSnS4 photovoltaic device fabricated via a pressurized post-sulfurization process. J Mater Chem C 6:13275–13282CrossRef
37.
Zurück zum Zitat Tang A, Teng F, Wang Y et al (2008) Investigation on photovoltaic performance based on matchstick-like Cu(2)S–In(2)S(3) heterostructure nanocrystals and polymer. Nanoscale Res Lett 3:502–507CrossRef Tang A, Teng F, Wang Y et al (2008) Investigation on photovoltaic performance based on matchstick-like Cu(2)S–In(2)S(3) heterostructure nanocrystals and polymer. Nanoscale Res Lett 3:502–507CrossRef
38.
Zurück zum Zitat Türck J, Siol S, Mayer T, Klein A, Jaegermann W (2015) Cu2S as ohmic back contact for CdTe solar cells. Thin Solid Films 582:336–339CrossRef Türck J, Siol S, Mayer T, Klein A, Jaegermann W (2015) Cu2S as ohmic back contact for CdTe solar cells. Thin Solid Films 582:336–339CrossRef
39.
Zurück zum Zitat Hall R, Birkmire R, Phillips J, Meakin J (1981) Thin-film polycrystalline Cu2S/Cd1−x ZnxS solar cells of 10% efficiency. Appl Phys Lett 38:925–926CrossRef Hall R, Birkmire R, Phillips J, Meakin J (1981) Thin-film polycrystalline Cu2S/Cd1−x ZnxS solar cells of 10% efficiency. Appl Phys Lett 38:925–926CrossRef
40.
Zurück zum Zitat Sam M, Bayati MR, Mojtahedi M, Janghorban K (2010) Growth of Cu2S/CdS nano-layered photovoltaic junctions for solar cell applications. Appl Surf Sci 257:1449–1453CrossRef Sam M, Bayati MR, Mojtahedi M, Janghorban K (2010) Growth of Cu2S/CdS nano-layered photovoltaic junctions for solar cell applications. Appl Surf Sci 257:1449–1453CrossRef
41.
Zurück zum Zitat Norian KH, Hall RB (1982) Fabrication and characterization of stable high efficiency (Cd, Zn)S/Cu2S solar cells. Thin Solid Films 88:55–66CrossRef Norian KH, Hall RB (1982) Fabrication and characterization of stable high efficiency (Cd, Zn)S/Cu2S solar cells. Thin Solid Films 88:55–66CrossRef
42.
Zurück zum Zitat Bryant FJ, Hariri AK, Scott CG (1983) Surface and interface processes influencing the stability of Cu2S–CdS thin film solar cells. J Phys D Appl Phys 16:2341–2348CrossRef Bryant FJ, Hariri AK, Scott CG (1983) Surface and interface processes influencing the stability of Cu2S–CdS thin film solar cells. J Phys D Appl Phys 16:2341–2348CrossRef
43.
Zurück zum Zitat Agbenyeke RE, Park BK, Chung T-M, Kim CG, Han JH (2018) Growth of Cu2S thin films by atomic layer deposition using Cu(dmamb)2 and H2S. Appl Surf Sci 456:501–506CrossRef Agbenyeke RE, Park BK, Chung T-M, Kim CG, Han JH (2018) Growth of Cu2S thin films by atomic layer deposition using Cu(dmamb)2 and H2S. Appl Surf Sci 456:501–506CrossRef
44.
Zurück zum Zitat Chen SG, Huang YF, Liu YQ, Xia Q, Liao HW, Long CG (2008) Synthesis and characterization of cuprous sulfide crystals with novel morphology. Mater Lett 62:2503–2506CrossRef Chen SG, Huang YF, Liu YQ, Xia Q, Liao HW, Long CG (2008) Synthesis and characterization of cuprous sulfide crystals with novel morphology. Mater Lett 62:2503–2506CrossRef
45.
Zurück zum Zitat Pi P, Hou K, Zhou C et al (2017) Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil–water separation. Appl Surf Sci 396:566–573CrossRef Pi P, Hou K, Zhou C et al (2017) Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil–water separation. Appl Surf Sci 396:566–573CrossRef
47.
Zurück zum Zitat More P, Dhanayat S, Gattu K, Mahajan S, Upadhye D, Sharma R (2016) Annealing effect on Cu2S thin films prepared by chemical bath deposition. AIP Conf Proc 1728:020489CrossRef More P, Dhanayat S, Gattu K, Mahajan S, Upadhye D, Sharma R (2016) Annealing effect on Cu2S thin films prepared by chemical bath deposition. AIP Conf Proc 1728:020489CrossRef
48.
Zurück zum Zitat Isac L, Duta A, Kriza A, Manolache S, Nanu M (2007) Copper sulfides obtained by spray pyrolysis-possible absorbers in solid-state solar cells. Thin Solid Films 515:5755–5758CrossRef Isac L, Duta A, Kriza A, Manolache S, Nanu M (2007) Copper sulfides obtained by spray pyrolysis-possible absorbers in solid-state solar cells. Thin Solid Films 515:5755–5758CrossRef
49.
Zurück zum Zitat Zhuge F, Li X, Gao X, Gan X, Zhou F (2009) Synthesis of stable amorphous Cu2S thin film by successive ion layer adsorption and reaction method. Mater Lett 63:652–654CrossRef Zhuge F, Li X, Gao X, Gan X, Zhou F (2009) Synthesis of stable amorphous Cu2S thin film by successive ion layer adsorption and reaction method. Mater Lett 63:652–654CrossRef
50.
Zurück zum Zitat Siol S, Sträter H, Brüggemann R et al (2013) PVD of copper sulfide (Cu2S) for PIN-structured solar cells. J Phys D Appl Phys 46:495112CrossRef Siol S, Sträter H, Brüggemann R et al (2013) PVD of copper sulfide (Cu2S) for PIN-structured solar cells. J Phys D Appl Phys 46:495112CrossRef
51.
Zurück zum Zitat Zhao Y, Chen K, Zhong Q, Yang S, Liu Y (2017) Single sub-microwire solar cells based on the CdS–Cu2S and CdS–ZnS core–shell heterostructures. Prog Nat Sci Mater Int 27:182–185CrossRef Zhao Y, Chen K, Zhong Q, Yang S, Liu Y (2017) Single sub-microwire solar cells based on the CdS–Cu2S and CdS–ZnS core–shell heterostructures. Prog Nat Sci Mater Int 27:182–185CrossRef
52.
Zurück zum Zitat Cox R, Strack H (1967) Ohmic contacts for GaAs devices. Solid State Electron 10:1213–1218CrossRef Cox R, Strack H (1967) Ohmic contacts for GaAs devices. Solid State Electron 10:1213–1218CrossRef
53.
Zurück zum Zitat Krylova V, Andrulevičius M (2009) Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film. Int J Photoenergy 2009:1–8CrossRef Krylova V, Andrulevičius M (2009) Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film. Int J Photoenergy 2009:1–8CrossRef
54.
Zurück zum Zitat Aria AI, Kidambi PR, Weatherup RS, Xiao L, Williams JA, Hofmann S (2016) Time evolution of the wettability of supported graphene under ambient air exposure. J Phys Chem C 120:2215–2224CrossRef Aria AI, Kidambi PR, Weatherup RS, Xiao L, Williams JA, Hofmann S (2016) Time evolution of the wettability of supported graphene under ambient air exposure. J Phys Chem C 120:2215–2224CrossRef
56.
Zurück zum Zitat Ghazzal MN, Wojcieszak R, Raj G, Gaigneaux EM (2014) Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM. Beil J Nanotechnol 5:68CrossRef Ghazzal MN, Wojcieszak R, Raj G, Gaigneaux EM (2014) Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM. Beil J Nanotechnol 5:68CrossRef
57.
Zurück zum Zitat Gupta S, Batra Y, Mehta BR, Satsangi VR (2013) Study of charge separation and interface formation in a single nanorod CdS–Cu(x)S heterojunction solar cell using Kelvin probe force microscopy. Nanotechnology 24:255703CrossRef Gupta S, Batra Y, Mehta BR, Satsangi VR (2013) Study of charge separation and interface formation in a single nanorod CdS–Cu(x)S heterojunction solar cell using Kelvin probe force microscopy. Nanotechnology 24:255703CrossRef
Metadaten
Titel
Efficient silicon solar cells applying cuprous sulfide as hole-selective contact
verfasst von
Lei Jin
Lun Cai
Danmin Chen
Wenxian Wang
Hui Shen
Fuqin Zhang
Publikationsdatum
01.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03797-x

Weitere Artikel der Ausgabe 19/2019

Journal of Materials Science 19/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.